COMMENT ON ARMSTRONG AND FORREST

David Lewis

The trouble with structural universals is that they afford *prima facie* counterexamples to a twofold principle of uniqueness of composition:

there is only one mode of composition; and it is such that, for given parts, only one whole is composed of them.

The worse, say I, for structural universals. The worse, say Armstrong and Forrest, for uniqueness of composition.¹ They say so all the more confidently because they think uniqueness of composition threatens not only an outlying province of the theory of universals, but also the heartland—not only structural universals, but also the *structures*, or *states of affairs*, that exist when particulars instantiate universals. If they are right, my bother over structural universals is a sideshow.

I say they are half right. Uniqueness of composition does threaten the structures. In fact, more so even than they say; because we get trouble even if the only universals are monadic, provided that we accept conjunctive structures. Suppose each of two particulars *a* and *b* instantiate each of two universals *F* and *G*; then it seems that we have two structures (*Fa & Gb*) and (*Ga & Fb*) composed of exactly the same parts, *contra* uniqueness of composition.

But I say the structures are merely a second outlying province, alongside the structural universals. A threat to them is no threat to the heartland. Give away the structures, and we could still do the main business of a theory of universals.² We could still say that two particulars have something in common when there is some one universal they both instantiate, and are exactly alike when they instantiate exactly the same universals. (Or, if we also gave away structural universals: . . . when their corresponding parts instantiate exactly the same universals.) Those who wished could still run a relation-of-universals theory of lawhood, though perhaps more in Tooley’s style than Armstrong’s. The loci of the universals would still mark out the joints in nature.

What could we *not* do, if universals were held but structures were lost? One thing—we could not, without structures, uphold the principle that every truth has a truthmaker. Here is the particular *a*; here is the universal *F*; it is a truth that *a* instantiates *F*. What is the truthmaker for this truth? What

² Goodman’s principal system in *The Structure of Appearance* is a theory of universals (‘qualia’) without structures. His nearest thing to a structure is the mereological sum of a colour quale *F* and a place-time *a*. But this cannot be what Armstrong and Forrest call a ‘structure’ or a ‘state of affairs’ because it would exist whether or not colour *F* occurs at place-time *a*.
is the entity whose very existence is a sufficient condition for \(a \) to instantiate \(F \)? The structure \(Fa \) would have done; for this structure is supposed to exist only if its particular part instantiates its universal part. But if the structure is given away, what other truthmaker may we find? Not \(F \), not \(a \), nor both together; not their mereological sum; not any set-theoretic construction from them. For all these things would exist just the same, whether \(a \) instantiates \(F \) or not. What else? If every truth must have its truthmaker, it is vital to hold onto the structures. If not, not.

Suppose the leading rivals to a theory of universals—resemblance or natural-class nominalism, sparse trope theory—were somehow out of the running. Set aside the issue of structural universals. Then we're left with a stark clash of principles: a truthmaker for every truth, versus uniqueness of composition. If that's the choice we face, I say it's no contest. I expect Armstrong and Forrest would say the same. But there I fear our agreement gives out.\(^4\)

\(^3\) That's why it's no good to say that the structure \(Fa \) is the ordered pair of \(F \) and \(a \), and that such a pair is called a 'structure' iff its second term instantiates its first. That way, what depends on whether \(a \) instantiates \(F \) is not whether the thing exists, but just whether it deserves a name. A pair that exists regardless, never mind what name it might deserve, won't do for a truthmaker.

\(^4\) Once more, I have been greatly helped by conversation and correspondence with D. M. Armstrong, John Bigelow, Peter Forrest, and Mark Johnston.