Papers in philosophical logic

DAVID LEWIS
Princeton University

CAMBRIDGE UNIVERSITY PRESS
J. R. Lucas serves warning that he stands ready to refute any sufficiently specific accusation that he is a machine. Let any mechanist say, to his face, that he is some particular machine M; Lucas will respond by producing forthwith a suitable Gödel sentence ϕ_M. Having produced ϕ_M, he will then argue that — given certain credible premises about himself — he could not have done so if the accusation that he was M had been true. Let the mechanist try again; Lucas will counter him again in the same way. It is not possible to accuse Lucas truly of being a machine.¹

I used to think that the accusing mechanist interlocutor was an expository frill, and that Lucas was really claiming to be able to do something that no machine could do.² But I was wrong; Lucas insists that the interlocutor does play an essential role. He writes that “the argument is a dialectical one. It is not a direct proof that the mind is something more than a machine; but a schema of disproof for any particular version of mechanism that may be put forward. If the mechanist maintains any specific thesis, I show that a contradiction ensues. But only if. It depends on the mechanist making the first move and putting forward his claim for inspection.”³ Very well.

promise to take the dialectical character of Lucas's argument more seriously this time — and that shall be his downfall.

Let O_L be Lucas's potential arithmetical output (i.e., the set of sentences in the language of first order arithmetic that he is prepared to produce) when he is not accused of being any particular machine; and for any machine M, let O^M_L be Lucas's arithmetical output when accused of being M. Lucas himself has insisted (in the passage I quoted) that the mechanist's accusations make a difference to his output. Therefore we cannot speak simply of Lucas's arithmetical output, but must take care to distinguish O_L from the various O^M_L's.

Likewise for any machine M: let O_M be M's arithmetical output when not accused of being any particular machine, and let O^N_M be M's arithmetical output when accused of being some particular machine N. If the machine M, like Lucas, is capable of responding to accusations, then O_M and the various O^N_M's may differ.

We may grant Lucas three premises.

(1) (Every sentence of) O_L is true. For O_L is nothing else but everyman's arithmetical lore, and to doubt the truth thereof would be extravagant scepticism.

(2) O_L includes all the axioms of Elementary Peano Arithmetic. Lucas can easily convince us of this.

(3) For any machine M, O^M_L consists of O_L plus the further sentence ϕ_M, a Gödel sentence expressing the consistency of M's arithmetical output. It is Lucas's declared policy thus to respond to any mechanistic accusation by producing the appropriate Gödel sentence; and — ignoring, for the sake of the argument, any practical limits on Lucas's powers of computation — he is able to carry out this plan. (We may take it that a mechanistic accusation is not sufficiently specific to deserve refutation unless it provides Lucas with a full functional specification of the machine he is accused of being: a machine table or the like.)

Let the mechanist accuse Lucas of being a certain particular machine M. Suppose by way of reductio that the accusation is true. Then $O_\theta = O_M$ and $O^M_\theta = O^M_M$.

M is a machine. In the present context, to be a machine is not to be made of cogwheels or circuit chips, but rather to be something whose output, for any fixed input, is recursively enumerable. (More precisely, the set of Goedel numbers encoding items of output is recursively enumerable.) If the whole output of M, on input consisting of a certain mechanistic accusation, is recursively enumerable, then so is the part that consists of sentences of arithmetic: O^M_M, in the case under consideration.

Then there is an axiomatizable formal theory θ that has as theorems all and only the sentences of arithmetic that are deducible in first order logic from O^M_M. Further, θ is an extension of Elementary Peano Arithmetic: by premise (2) the axioms thereof belong to O_θ, by premise (3) O_θ is included in O^M_M, O^M_θ – that is, O^M_M – is included in θ. Hence θ is the sort of theory that cannot contain a Goedel sentence expressing its own consistency unless it is inconsistent.

Is θ inconsistent? Apparently so. The Goedel sentence ϕ_M belongs to O^M_M, hence to O^M_M, and hence to θ.

Yet if ϕ_M is true, then O^M_θ, which is O_θ plus ϕ_M, is true by premise (1); hence O^M_θ is true, hence θ is true and a fortiori consistent.

Lucas says that he can see that ϕ_M is true. Surely he means that he can see that if the accusation that he is M is true, then ϕ_M is true. If he meant more than that, the accusation – which he disbelieves and is in process of refuting – is irrelevant; he ought to be able to see that ϕ_M is true without the accuser’s aid, contrary to his insistence on the dialectical character of his argument.

How could he see that? Perhaps as follows. (I can see no other way.) By premise (1), Lucas’s arithmetical output is true. If true, then a fortiori it is consistent. If the accusation that Lucas is M is true, it follows that the arithmetical output of M is consistent. Accordingly, a Goedel sentence expressing the consistency thereof is true – and ϕ_M is just such a sentence.

And so the supposition that Lucas is M has seemingly led to contradiction. On the one hand, θ contains ϕ_M and must therefore be inconsistent; on the other hand ϕ_M is true, so θ is true, so
θ is consistent. The mechanistic accusation stands refuted. Q.E.D.

Not quite! We must be more careful in saying what \(\phi_M \) is. It is, we said, "a Gödel sentence expressing the consistency of M's arithmetical output". Does \(\phi_M \) then express the consistency of \(O_M \), M's arithmetical output when not accused of being any machine? Or of \(O^M \), M's arithmetical output when accused of being M? After all, under the supposition that Lucas is M, M has in fact been accused of being M and M's arithmetical output may well have been modified thereby.

First case: \(\phi_M \) is a Gödel sentence expressing the consistency of \(O_M \), M's original arithmetical output unmodified by any accusation. Then we have a correct proof (given premise (1)) that if Lucas is M, then \(\phi_M \) is true. But this \(\phi_M \) does not express the consistency of \(O^M \), so it may belong to \(\theta \) although \(\theta \) is true and hence consistent. In this case Lucas's \textit{reductio} against the accusation that he is M fails.

Second case: \(\phi_M \) is a Gödel sentence expressing the consistency of \(O^M \), M's arithmetical output when accused of being M. Then, since \(\phi_M \) also expresses the consistency of \(\theta \), \(\phi_M \) cannot belong to \(\theta \) unless \(\theta \) is inconsistent and \(\phi_M \) is therefore false. If Lucas is M, \(\phi_M \) does belong to \(\theta \) and is false. But so be it. In this case we have no good argument that \(\phi_M \) is true. Even if Lucas is M, \(\phi_M \) no longer expresses the consistency of the trustworthy \(O_L \), but rather of \(O^M \), that is, of \(O_L \) plus \(\phi_M \) itself. If we tried to argue that \(\phi_M \) is true (if Lucas is M) because it expresses the consistency of a set of truths, we would have to assume what is to be proved: the truth, \textit{inter alia}, of \(\phi_M \). In this case also Lucas's \textit{reductio} fails.

There are machines that respond to true mechanistic accusations by producing true Gödel sentences of the sort considered in the first case; for all we know, Lucas may be one of them. There are other machines that respond to true mechanistic accusations by producing false Gödel sentences of the sort considered in the second case; for all we know, Lucas may be one of them. Perhaps there also are non-machines, and for all we know Lucas may be one of them.

To confuse the two sorts of Gödel sentences is a mistake. It is part of the mistake of forgetting that the output of Lucas, or of a machine, may depend on the input. And that is the very mistake that Lucas has warned us against in insisting that we heed the dialectical character of his refutation of mechanism.