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The distinction between analog and digital representation of 
numbers is well understood in practice. Yet its analysis has proved 
troublesome. I shall first consider the account given by Nelson 
Goodman and offer examples to show that some cases of analog 
representation are mis-classified, on Goodman's account, as digital. 
Then I shall offer alternative analyses of analog and digital repre- 
sentation. 

1. DIFFERENTIATED ANALOG REPRESENTATION 
According to Goodman in Languages of Art,' the distinction 

between digital and analog representation of numbers is as follows. 
Digital representation is differentiated. Given a number-represent- 
ing "mark"-an inscription, vocal utterance, pointer position, elec- 
trical pulse, or whatever-it is theoretically possible, despite our 
inability to make infinitely precise measurements, to determine 
exactly which other marks are copies of the given mark and to 
determine exactly which number (or numbers) the given mark and 
its copies represent. Analog representation, on the other hand, fails 
to be differentiated because it is dense. For any two marks that are 
not copies, no matter how nearly indistinguishable they are, there 
could be a mark intermediate between them which is a copy of 
neither; and for any two marks that are not copies and represent 
different numbers, no matter how close the numbers are, there is an 

1 (Indianapolis and New York: Bobbs-Merrill, 1968), sections IV.2, 
IV.5, and IV.8. I have combined Goodman's syntactic and semantic differen- 
tiation and combined his syntactic and semantic density; and I have not 
defined differentiation and density in full generality, but only as applied to 
the representation of numbers. 
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intermediate number which would be represented by a mark that 
is a copy of neither. 

It is true and important that digital representation is differen- 
tiated, and that it differs thereby from the many cases of analog 
representation that are undifferentiated and dense: those cases in 
which all real numbers in some range are represented by values 
of some continuously variable physical magnitude such as voltage. 
But there are other cases: representation that is as differentiated 
and non-dense as any digital representation and yet is analog 
rather than digital representation. Here are two examples of differ- 
entiated analog representation. If accepted, they show that Good- 
man's distinction, interesting though it is in its own right, does not 
coincide with the analog-digital distinction of ordinary technological 
language. 

Example 1: ordinary electrical analog computers sometimes 
receive their numerical inputs in the form of settings of variable 
resistors. A setting of 137 ohms represents the number 137, and so 
on. There are two ways these variable resistors might work. In the 
first case, a contact slides smoothly along a wire with constant 
resistance per unit length. In the second case, there is a switch with 
a very large but finite number of positions, and at each position a 
certain number of, say, 1-ohm fixed resistors are in the circuit and 
the rest are bypassed. I do not know which sort of variable resistor 
is used in practice. In either case, the computer is an analog com- 
puter and its representation of numbers by electrical resistances is 
analog representation. In the sliding-contact case the representation 
is undifferentiated and dense; but in the multi-position switch case 
the representation is differentiated and non-dense, yet analog and 
not digital. 

Example 2: we might build a device which works in the fol- 
lowing way to multiply two numbers x and y. There are four recep- 
tacles: W, X, Y, and Z. We put a large amount of some sort of fluid 
-liquid, powder, or little pellets-in W. We put x grams of fluid in 
X, y grams in Y, and none in Z. At the bottom of X is a valve, allow- 
ing fluid to drain at a constant rate from X into a wastebasket. At 
the bottom of W is a spring-loaded valve, allowing fluid to drain 
from W into Z at a rate proportional to the amount of fluid in Y. 
For instance, if Y contains 17 grams of fluid, then the rate of drain- 
age from W is 17 times the constant rate of drainage from X. We 
simultaneously open the valves on W and X; as soon as X is empty, 

This content downloaded from 130.132.173.105 on Tue, 4 Jun 2013 12:11:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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we close the valve on W. The amount z of fluid that has passed from 
W to Z at a rate proportional to y in a time proportional to x is the 
product of the numbers x and y. This device is an analog computer, 
and its representation of numbers by amounts of fluid is analog 
representation. In case the fluid is a liquid, the representation is un- 
differentiated and dense (almost-but even a liquid consists of 
molecules); but in case it is 1-gram round metal pellets, the repre- 
sentation is differentiated and non-dense, yet analog and not digital. 

2. ANALOG REPRESENTATION 

It is commonplace to say that analog representation is repre- 
sentation of numbers by physical magnitudes. And so it is; but so is 
digital representation, or any other sort of representation that could 
be used in any physically realized computer, unless we adopt a 
peculiarly narrow conception of physical magnitudes. 

We may regard a physical magnitude as a function which 
assigns numbers to physical systems at times. A physical magnitude 
may be defined for every physical system at every moment of its 
existence, or it may be defined only for physical systems of some 
particular kind or only at some times. Let us call any such function 
a magnitude. We can then define a physical magnitude as any 
magnitude definable in the language of physics more or less as we 
know it. This is imprecise, but properly so: the vagueness of "phys- 
ical magnitude" ought to correspond to the vagueness of "physics". 

Since the language of physics includes a rich arithmetical 
vocabulary, it follows that if the values of a magnitude depend by 
ordinary arithmetical operations on the values of physical magni- 
tudes, then that magnitude is itself a physical magnitude. Now 
suppose that in computers of a certain sort, numbers are repre- 
sented in the following way. We consider the voltages vo, . . ., v3, 

between 36 specified pairs of wires in any such computer at any 
time at which the computer is operating. By taking these voltages 
in order, and associating with each positive voltage the digit 1 and 
with each negative voltage the digit 0, we obtain a binary numeral 
and the number denoted by that numeral. Here is as good a case 
of digital representation as we could find. Yet it is also a case of 
representation by a physical magnitude: the number represented 
thus by computer s at time t is the value of the physical magnitude 
defined below by means of arithmetical vocabulary in terms of the 
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voltages vo, . .. , V35. (We take the magnitude to be undefined if 
any vi is 0.) 

X 
-5t) 

35 V Iif vj(s't) > 0- 
V(st) = Z= 2t iO { if v:(st) < ? 

= Z3=02' + Vv+ s 02] j=o L2 2vis(s,t) 
Analog representation, then, is representation of numbers by phys- 
ical magnitudes of a special kind. Resistances, voltages, amounts of 
fluid, for instance, are physical magnitudes of the proper kind for 
analog representation; but V, as defined above, is a physical magni- 
tude not of the proper kind for analog representation. How may we 
distinguish physical magnitudes that are of the proper kind for 
analog representation from those that are not? 

We might try saying that the magnitudes suitable for analog 
representation are those that are expressed by primitive terms in 
the language of physics. This will not do as it stands: a term is 
primitive not relative to a language but relative to some chosen 
definitional reconstruction thereof. Any physical magnitude could 
be expressed by a primitive term in a reconstruction designed ad 
hoc, and there is no physical magnitude that must be expressed by 
a primitive term. We may, however, define a primitive magnitude 
as any physical magnitude that is expressed by a primitive term in 
some good reconstruction of the language of physics-good accord- 
ing to our ordinary standards of economy, elegance, convenience, 
familiarity. This definition is scarcely precise, but further precision 
calls for a better general understanding of our standards of good- 
ness for definitional reconstructions, not for more work on the topic 
at hand. 

Even taking the definition of primitive magnitudes as under- 
stood, however, it is not quite right to say that analog representation 
is representation by primitive magnitudes. Sometimes it is represen- 
tation by physical magnitudes that are almost primitive: definable 
in some simple way, with little use of arithmetical operations, in 
terms of one or a few primitive magnitudes. (Further precision here 
awaits a better general understanding of simplicity of definitions.) 
Products of a current and a voltage between the same two points in 
a circuit, or logarithmically scaled luminosities, seem unlikely to be 
expressed by primitive terms in any good reconstruction. But they 
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are almost primitive, and representation of numbers by them would 
be analog representation. Of more interest for our present purposes, 
rounded-off primitive magnitudes are almost primitive. Such are the 
number-representing magnitudes in our two examples of differen- 
tiated analog representation: resistance rounded to the nearest ohm 
and amount of fluid rounded to the nearest gram. We use the 
rounded-off magnitudes because, in practice, our resistors or pellets 
are not exactly one ohm or gram each; so if we take the resistance 
of 17 resistors or the mass of 17 pellets to represent the number 17 
(rather than some unknown number close to 17) we are using not 
primitive magnitudes but almost primitive magnitudes. 

The commonplace definition of analog representation as repre- 
sentation by physical magnitudes is correct, so far as I can see, if 
taken as follows: analog representation of numbers is representation 
of numbers by physical magnitudes that are either primitive or 
almost primitive according to the definitions above. 

3. DIGITAL REPRESENTATION 

It remains to analyze digital representation, for not all non- 
analog representation of numbers is digital. (It may be, however, 
that all practically useful representation of numbers is either analog 
or digital.) If numbers were represented by the physical magnitude 
defined as follows in terms of voltages between specified pairs of 
wires in some circuit, the representation would be neither analog 
nor digital (nor useful). 

35 
P(st) = L logo( sinh(V\/ vi(s,t))) 

Digital representation is representation by physical magnitudes of 
another special kind, the kind exemplified above by V. 

We may first define an n-valued unidigital magnitude as a 
physical magnitude having as values the numbers 0, 1, . . ., n - 1 
whose values depend by a step function on the values of some 
primitive magnitude. Let U be an n-valued unidigital magnitude; 
then there is a primitive magnitude B which we may call the basis 
of U and there is an increasing sequence of numbers a,, . .. ., a.- 
which we may call the transition points of U and, for each system s 
on which U is defined, there is a part p of s such that U is defined 
as follows on s. 
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rOif a > B(p,t) 
1 if a2> B(p,t) > a, 

U(s,t) = 

n - 1if B(p,t) >a, 

z --[1 \V (B(p,t) -a) 
[i2 2(B(p,t)-as) 

Let us call a unidigital magnitude differentiated if, in the systems 
on which it is defined, its basis does not take values at or near its 
transition points. 

Representation of numbers by differentiated unidigital magni- 
tudes, or by physical magnitudes whose values depend arithmetically 
on the values of one or more differentiated unidigital magnitudes, is 
differentiated and non-dense representation, hence digital represen- 
tation in Goodman's sense. But it may not really be digital repre- 
sentation. In fact, it may be analog representation. A unidigital 
magnitude with many evenly spaced transition points is exactly 
what we have been calling a rounded-off primitive magnitude; it is 
almost primitive and suitable for analog representation. The number- 
representing magnitudes in our examples of differentiated analog 
representation are differentiated unidigital magnitudes, but repre- 
sentation by these magnitudes is analog representation. 

What distinguishes digital representation, properly so-called, 
is not merely the use of differentiated unidigital magnitudes; it is 
the use of the many combinations of values of a few few-valued 
unidigital magnitudes. Let us now define a multidigital magnitude 
as any physical magnitude whose values depend arithmetically on 
the values of several few-valued unidigital magnitudes. Let us call 
a multidigital magnitude differentiated if it depends on differen- 
tiated unidigital magnitudes. In fixed point digital representation, 
for instance, a multidigital magnitude MI depends as follows on 
several n-valued unidigital magnitudes uo, . . ., u,_ . 

-1 
M(s,t) E= 0 it, U,(s,t) 

V is a multidigital magnitude of this sort, with m 36, n = 2, and 
each us having as its basis the corresponding voltage v at the- speci- 
fied part of the system. Other multidigital magnitudes depend in 
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ANALOG AND DIGITAL 327 

more complicated ways upon their unidigital magnitudes. Most 
often, the unidigital magnitudes are not merely few-valued but two- 
valued; but not so, for instance, in an odometer in which the uni- 
digital magnitudes are ten-valued step functions of angles of rota- 
tion of the wheels. 

I suggest, therefore, that we can define digital representation 
of numbers as representation of numbers by differentiated multi- 
digital magnitudes. 
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