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Abstract

This dissertation explores the concepts of naturalness, intrinsicality, and du-
plication. An intrinsic property is had by an object purely in virtue of the
way that object is considered in itself. Duplicate objects are exactly similar,
considered as they are in themselves. The perfectly natural properties are
the most fundamental properties of the world, upon which the nature of the
world depends.

In this dissertation I develop a theory of intrinsicality, naturalness, and
duplication and explore their philosophical applications. Chapter 1 intro-
duces the notions, gives a preliminary survey of some proposed conceptual
connections between the notions, and sketches some of their proposed ap-
plications. Chapter 2 gives my background assumptions and introduces no-
tational conventions.

In chapter 3 I present a theory of naturalness. Although I take ‘natural’
as a primitive, I clarify this notion by distinguishing and explicating various
conceptions of naturalness.

In chapter 4 I give a theory of various notions related to naturalness, es-
pecially intrinsicality and duplication. I show that ‘intrinsic’ and ‘duplicate’
are interdefinable, and then give analyses of these and other notions in terms
of naturalness.

If, as I think likely, naturalness cannot be analyzed, then what is the
proper response? David Lewis suggests: accept naturalness as a primitive. |
am sympathetic to this proposal, but not to the form Lewis gives it: chapter
5 contains an argument against Lewis’s theory of naturalness.

In chapter 6 I reject the idea that naturalness is analyzable in terms of
immanent universals. 1 focus on the work of D. M. Armstrong. I also criticize
Armstrong’s arguments against transcendent universals.

In chapter 7 I address criticisms of David Lewis’s definition of ‘intrinsic’
offered by Mike Dunn.

i
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In chapter 8 I discuss the possibility of analyzing our three notions. I
discuss defining ‘natural’ in terms of supervenience and other concepts, and
then criticize attempts by Jaegwon Kim and Michael Slote to analyze intrin-
sicality in terms of “quasi-logical” concepts.

Finally, in chapter 9 I present a new application for the notion of natu-
ralness: the statement of “metrical realism” in the philosophy of space and
time.
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Chapter 1

Introducing Three Notions

1.1 Intrinsicality and Duplication

Today my brother got a haircut. Yesterday Mike had the property having
long hair; today he does not. By losing this property my brother changed.
When my only brother got his much-needed haircut, I too lost a property:
the property having a long-haired brother. But when the haircut occurred, 1
did not change. Mike’s haircut changed Mike, not me, despite the fact that
we each thereby lost properties we formerly had (and gained new ones as
well). This is because the property Mike lost, having long hair, is an intrinsic
property, whereas the property I lost, having a long-haired brother, is not.
Consider the property having long hair. When someone has this property,
he has it in virtue of the way he is in himself. In contrast, when a person has
the property having a long-haired brother, he does not have this purely in
virtue of the way he is himself; he has this property partly in virtue of the way
someone else is (namely, his brother) and partly in virtue of the relations he
bears to that someone else (namely, the being the only brother of relation).
When an object x has an intrinsic property, then, this is in virtue of the way
x is, and not a matter of the ways other objects are, nor of the way x stands
with respect to other objects. Intrinsic properties are “non-relational” and
“purely qualitative”. If an object has an intrinsic property, then so must
any “perfect duplicate” of that object. In contrast, extrinsic (non-intrinsic)
properties may differ between perfect duplicates. Marble A may be a perfect
duplicate of marble B despite the fact that A has, while B lacks, the property
being ten feet from Ted. Shapes, sizes, masses—these are intrinsic properties.
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Locations, speeds, ownerships (e.g. being owned by Ted)—these are extrinsic
properties.

I hope that the preceding paragraph has helped you grasp the notion of
an intrinsic property, if you were not already familiar with that notion. But
I suspect that you distrust the value of what I have said as an analysis of the
notion, on grounds of circularity. You may ask me to explain the locutions
I used in that paragraph: ‘duplicate’, and ‘had in virtue of the way an object
is in itself’, for example. What is the “way an object is in itself”, if not
the conjunction of its intrinsic properties? What is it for two objects to be
“duplicates”, if not for them to have exactly the same intrinsic properties?

Let us focus a little more closely on the notion of duplication, and its re-
lation to intrinsicality. Objects that are perfect duplicates are exactly similar,
down to the last detail of the smallest part. It is likely that there are no actual
pairs of macroscopic duplicates. Even two marbles made by the best manu-
facturing techniques are bound to differ slightly—a stray atom here or there.
The differences may not be perceptible, but if they are there then the marbles
cannot be duplicates, for duplicates may not have any (intrinsic) differences
whatsoever. Of course, 70 pair of objects, even a pair of perfect duplicates,
will share all properties. For consider any two objects 2« and b—only a4 will
have the property being a. Although it is likely that there are no two actual
macroscopic duplicates, it may be that there are pairs of actual microscopic
duplicates: perhaps pairs of duplicate electrons. And surely every object,
microscopic or macroscopic, has a duplicate in some other possible world.!

One reason for the importance of the concept of duplication is that ‘in-
trinsic’ may be defined in terms of ‘duplicate’, as David Lewis has proposed:?

(D1) Property P is intrinsic iff for any possible individuals x and y, if x and
y are duplicates then x has P iff y has P

In fact, the direction of definition can be reversed: ‘duplicate’ is definable
in terms of ‘intrinsic’:

(D2) Possible individuals x and y are duplicates iff for any intrinsic property
P, x has P iff y has P

! Tignore sets, numbers, and the like. See section 2.1.
2See Lewis (1986¢, p. 62), and Lewis (19834, p. 197).
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We have a circle of interdefinability between ‘intrinsic’ and ‘duplicate’.?
Some philosophers claim to be able to break into this circle and define ‘in-
trinsic’ merely in terms of “quasi-logical” (e.g. modal, part/whole) and spa-
tiotemporal concepts. I discuss this claim in chapter 8; my verdict is negative.
Some might claim that intrinsicality is relative to human interests or cognitive
capabilities. A related proposal would be that certain properties are singled
out by context as those we “count as intrinsic” for the purposes of conver-
sation. But on these views there would be no “objective” intrinsic/extrinsic
distinction; there would merely be our conventions. I reject this option; I
will mention below the reason for this rejection. What, then, is the remain-
ing option? To take the distinction (or a related distinction—see below) as a
primitive distinction.

Some, I know, will find this ludicrous. When I discuss intrinsicality and
duplication they will refuse to understand my words; for them, my argu-
ments will be impossible to evaluate, my claims ultimately groundless. Until
I can define my terms they will reject them. But I say that the notions of
intrinsicality and duplication are pre-analytically understood, and are there-
fore as fit a foundation for philosophical theorizing as we can reasonably
demand. Go back and re-read the example of my long-haired brother. Can
you honestly claim not to see the difference between having long hair and
having a long-haired brother?

Of course, it would be rash to suppose that understanding of the word
‘intrinsic’ in precisely the sense that I intend is a part of everyday wisdom,
for it is not. Many have never thought of the concept of intrinsicality, and
it often requires a little “coaching” to introduce the notion to someone who
is not familiar with it. Moreover, some philosophers may use ‘intrinsic’ to
mean something different from what I mean by that word, so I should not
claim that intrinsicality is commonly known by that name. It may be that
‘intrinsic’ has several meanings.* But I do claim that there is a notion that
is properly called ‘intrinsicality’ that is easily fixed on, given a few phrases
(e.g. “purely qualitative”, “non- relational”, etc.) and suggestive examples.

In particular, I regard definition (D1) as doing the lion’s share of the work
in picking out the intended sense of ‘intrinsic’, for the notion of duplication
is, I think, clear and unambiguous. Consider the claim of Mike Dunn, for

3In section 4.1 I show that ‘intrinsic’ and ‘duplicate’ are indeed interdefinable via (D1)
and (D2).
4See Moore (1922), esp. p. 262.
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example, that the property being a is intrinsic, for it “depends on 2 and on no
other thing” (1990, p. 186). Dunn, I think, has simply got a different notion
of intrinsicality in mind, and we can clear things up by stipulating that the
notion of intrinsicality we are here concerned with may be defined in terms
of duplication via (D1). Additionally, I exclude this property because it is
not purely qualitative.’

To forestall certain objections to my claim that the notions of intrinsical-
ity and duplication are well-understood, consider an example. Let us grant
ourselves talk of the colors of visual “sensations” or “qualia”. Thus, red
things cause me to experience “red” qualia when I look at them in the ap-
propriate light. Some philosophers (notably Locke) thought that color prop-
erties are somehow not as real as other properties of physical objects—they
are “secondary qualities”. One could interpret this as involving a claim that
color properties are not intrinsic. For suppose, simplistically, that Locke’s
view is that x is red iff x causes “red” qualia in people. According to this
view, redness is clearly extrinsic. For let x be any actual red object; we can
imagine a world containing a perfect duplicate of x that causes no “red”
qualia (perhaps that world contains no people, or perhaps the people there
have “inverted spectra”). Since x and a perfect duplicate of x differ over
redness, that property turns out extrinsic on Locke’s view.

Another theory according to which color properties are extrinsic says that
the color of an object is determined by the wavelength of the light it scatters.
Since the wavelength of light scattered by an object is partly a matter of
the laws of nature, colors on this view are extrinsic as well. For consider
some actual red ball B. We can imagine a possible world with different laws
governing the interaction of light with material bodies, a result of which is
that a certain duplicate of B scatters light with the same wavelength as that
scattered by blue objects in the actual world. The theory we are considering
has the result that this duplicate of B has a different color from B: blue.

Others claim that color properties are intrinsic. One such theory holds
that the color of an object is determined by the physical and microphysical
properties of its surface. Since the latter properties are intrinsic, this theory
entails that color properties are likewise intrinsic.

One might think that the fact that it is controversial whether color prop-
erties are intrinsic falsifies my claim that the intrinsic/extrinsic distinction
is pre-analytically understood. Not so. All agree on the intrinsic/extrinsic

SSee section 4.2.2 for a definition and explanation of ‘qualitative’.
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status of the relevant properties here. Having surface structure S is intrin-
sic. Reflecting light of wavelength A is extrinsic. Causing “red” qualia is
extrinsic. No disagreement there. The disagreement is over what property is
expressed by the word ‘red’, and not over the intrinsicality of any one prop-
erty. Similarly, I might know each person in the room, and still not able to
answer when you ask: who is the richest person in the room?

Similar considerations arise for the case of words referring to “artifacts”.
Consider a chair made of homogeneous matter, and also a slab of solid ho-
mogeneous matter of the same kind. If the slab is large enough, then, given
certain assumptions, there is a duplicate of the chair inside the slab.® Indeed,
there will be many. Let us call these objects inside the slab “pseudo-chairs”.
Are pseudo-chairs chairs? 1 do not know. Since I do not know, I do not
know whether being a chair is intrinsic. If pseudo-chairs are not chairs then
the chair has non-chairs for duplicates, and hence being a chair is extrinsic.
On the other hand, if pseudo-chairs are chairs, then perhaps being a chair is
intrinsic.” But again, my uncertainty is not uncertainty over the extension of
‘intrinsic’. T am uncertain because I do not know precisely which property is
expressed by ‘chair’.

Let us consider another example to clarify the concepts of intrinsicality
and duplication. Consider a ball made of sponge into which I am pressing
my finger. That ball has a shape that we might call “S”: somewhat spherical,
but deformed at the place where my finger presses in.

Someone might say: “Having shape S is not an intrinsic property. Surely
everything is a duplicate of itself. But before I pressed my finger into the

®The assumptions are two. The first is the assumption that for any objects whatsoever,
there is an object that is their mereological sum. Peter van Inwagen, for example, would
deny this. See van Inwagen (1990), esp. pp. 74-80. The second is that the chair-shaped
objects inside the slab are not disqualified from being duplicates of the original chair by
the fact that they are surrounded by matter. The issue here involves “local properties”.
Under the rubric of “local properties” go not only properties had by an object in virtue
of what that object is like, but also properties had by an object in virtue of what goes on
in its infinitesimal neighborhood. Must all local properties be intrinsic? If all are, then a
chair cannot have a duplicate that is surrounded by matter. But I assume that not all local
properties are intrinsic—thus, chair-like entities inside the slab are duplicates of the original
chair.

7Other cases, such as one involving a duplicate of the chair that happens to materialize
in outer space, might be relevant as well. I am inclined to think that pseudo-chairs are not
chairs, and hence that chairhood is extrinsic. But there may be no determinate fact of the
matter.



CHAPTER 1. INTRODUCING THREE NOTIONS 6

ball, it had a different shape. Hence, having shape S can differ between
duplicates—namely, between the ball and itself—and so is extrinsic.” This
would clearly be a mistake. To fix it, let us speak of the various “temporal
parts”, or “time slices” of the ball. Let s, be a time slice of the ball when
I am pressing on it, and let s, be a slice of the ball when I am not pressing
on it. s, has shape S, whereas s, does not. But s, and s, are not duplicates.
Certainly, everything is a duplicate of itself, but this does not imply that s, is
a duplicate of s,, for s, and s, are distinct.

Someone might say: “The property of being pushed on is intrinsic. Any
duplicate of the ball would have to have something pushing on the spot of
the deformation to give it shape S.” This too would be a mistake. To see that
this property is extrinsic, consider a possible world w containing only a ball
with shape S. Since the ball is alone in w, nothing is pushing on it, but we
may stipulate that this ball is a duplicate of the actual ball. It may be objected
that the ball would not have shape S, for the forces between the molecules
constituting the ball would force it into a circular shape in the absence of a
force deforming it. But this objection assumes that the causal laws of w are
the same as those of our world, and there is no reason to suppose this. It
surely is metaphysically possible that a ball have shape § without any force
being exerted on it at all. This example reminds us that in definitions (D1)
and (D2), we are told to consider all possible objects, and not just objects in
worlds with the same causal laws as the actual world.®

In intuitively conveying the concept of intrinsicality, I have relied heavily
on David Lewis’s words in Lewis (1986¢, pp. 61 ff.), and in Lewis (19834,
p- 197). (For a radically different conception of intrinsicality, see Shoemaker
(1980).) G. E. Moore has an account similar to that of Lewis. Moore char-
acterizes the notion of an “intrinsic kind of value” (1922, p. 260).

To say that a kind of value is “intrinsic” means merely that the question
whether a thing possesses it, and in what degree it possesses it, depends
solely on the intrinsic nature of the thing in question.

He then says that x’s having P “depends solely on the intrinsic nature” of x iff
in any circumstances, an object that is either i) identical to x, or ii) “exactly

$We needn’t have considered a world with different laws. Suppose I squeeze the ball even
harder until it reaches an even more deformed shape §’. Now I let it go. While returning
back to sphericality, we may suppose that the ball momentarily assumes shape S. Its stage
at that moment has shape S, and may be stipulated to be a duplicate of the original stage of
the ball, but it has nothing pressing on it.



CHAPTER 1. INTRODUCING THREE NOTIONS 7

like x” must of necessity have P iff x has P (1922, pp. 260-261). The first
clause, that any object identical to x must have P iff x has P, may seem odd.
But it is clear that for Moore, any object not exactly like x would necessarily
be distinct from x (1922, p. 261). Thus, it seems not unfair to attribute to
Moore the view that a “value” is intrinsic just when it never differs between
objects that are exactly alike—i.e. are duplicates. His notion of an intrinsic
kind of value, then, seems near to Lewis’s notion of an intrinsic property.

It must be cautioned that Moore uses the term ‘intrinsic property’ in such
a way that not all properties had solely in virtue of the intrinsic natures of
their instances are intrinsic properties. Moore claims that goodness is not an
intrinsic property despite the fact that it depends on the intrinsic natures of
the things that have it (1922, p. 273). All intrinsic properties are properties
that depend on the intrinsic natures of their instances, according to Moore,
but not vice versa. Moore has an interesting struggle with the question of
the difference between these two notions, and admits that he cannot draw
the distinction. He says:

I can only vaguely express the kind of difference I feel there to be by
saying that intrinsic properties seem to describe the intrinsic nature of
what possesses them in a sense in which predicates of value never do. If
you could enumerate all the intrinsic properties a given thing possessed,
you would have given a complete description of it, and would not need
to mention any predicates of value it possessed; whereas no description
of a given thing could be complete which omitted any intrinsic property
(1922, p. 274).

You cannot say that an intrinsic property is a property such that, of
one thing possesses it and another does not, the intrinsic nature of the
two things must be different. For this is the very thing which we are
maintaining to be true of predicates of intrinsic value, while at the same
time we say that they are #ot intrinsic properties (1922, p. 275).

It may be that by ‘intrinsic property’ Moore meant to express something like
what I would express by ‘perfectly natural property’. However, I would say
that to completely describe an object, one must do more than say what per-
fectly natural properties it has—one must say what perfectly natural prop-
erties are had by its parts and in what perfectly natural relations those parts
stand. (In fact, even this is not enough—see section 4.2.1).
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1.2 Naturalness

I believe that it would be permissible to take one of our two notions as a
primitive. But a similar option, the one I will take in this dissertation, is to
take the related notion of a natural property as a primitive, and to define ‘in-
trinsic’ and ‘duplicate’ in terms of ‘natural’. This is the suggestion of David
Lewis. I share Lewis’s enthusiasm for the importance of naturalness. Indeed,
this dissertation is foremostly devoted to extending Lewis’s project of intro-
ducing naturalness into ontology as a primitive notion and harvesting the
theoretical benefits.

In chapter 3 I will devote significant effort to explaining the notion of
naturalness; for now, the following important quotation from Lewis will
serve to introduce the notion (1986¢, p. 60).

Sharing of [the perfectly natural properties] makes for qualitative sim-
ilarity, they carve at the joints, they are intrinsic, they are highly spe-
cific, the sets of their instances are ipso facto not entirely miscellaneous,
there are only just enough of them to characterise things completely and
without redundancy.

Physics has its short list of ‘fundamental physical properties’: the charges
and masses of particles, also their so- called ‘spins’ and ‘colours’ and
‘flavours’, and maybe a few more that have yet to be discovered...What
physics has undertaken...is an inventory of the [perfectly natural prop-
erties] of this-worldly things.

Naturalness is best thought of as coming in degrees, the most natural prop-
erties being the perfectly natural properties. The perfectly natural properties
are an elite minority of the intrinsic properties—the most fundamental prop-
erties. They are nature’s most basic “building blocks”. Naturalness applies
to relations as well: the perfectly natural relations are the most fundamental
relations. Roughly speaking,” the entire qualitative character of our world
is fixed once we fix the distribution of the perfectly natural properties and
relations over its objects. If present-day physics is on the right track, then the
properties of charge, spin, mass, the quark flavors, colors, etc. are among
this world’s perfectly natural properties, and the spatiotemporal relations are
perfectly natural relations.

?See sections 3.2.1 and 3.2.2.
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It should be highlighted that the notions of intrinsicality, naturalness,
and duplication are not thought of as being tied to the perceptual or scien-
tific capabilities of humans. Intrinsic properties need not be detectable, even
in principle. Two objects might appear to all of our best efforts, scientific
or otherwise, to be perfect duplicates; they may yet fail to be duplicates be-
cause they differ with respect to some intrinsic property that utterly evades
our capabilities. If this strange property is, in some sense, a “non-physical”
property, then the hope of the materialist that the world be completely de-
scribable in physical terms would be dashed, but this would not disqualify
the property from being intrinsic. The same remark applies to natural prop-
erties; these too may transcend our ability to detect them; these too need not
be “physical”.

In chapter 3 I say more about just what the notion of naturalness comes
to, but for now let us press on to the definition of ‘intrinsic’ and ‘duplicate’
in terms of ‘natural’. We begin first with the definition of ‘duplicate’. In
fact, this definition is not irrelevant to characterizing the primitive notion of
naturalness, for one way to elucidate a primitive notion is to define other
notions in terms of it, notions of which we have a prior grasp.

According to Lewis, we may define ‘duplicate’ as follows:!°

(D3) Possible objects x and y are duplicates iff there is a one-to- one cor-
respondence between x’s parts and y’s parts such that corresponding
parts stand in the same perfectly natural relations and have the same
perfectly natural properties

‘Intrinsic’ may then be defined by (D1).

I do not claim that the notion of naturalness is as near to commonsense
as that of intrinsicality or duplication. Still, I think it is reasonable to adopt it
as a primitive. First, I do think that naturalness is reasonably commonsensi-
cal. We do have a notion of the fundamental properties after which physics
seeks; I hope to convince you of this in chapter 3. Secondly, naturalness
seems to have vast philosophical utility; I take it that this is a good reason
for adopting the notion. For example, it enables analysis of intrinsicality
and duplication. The notion bears other fruit as well; various applications
of naturalness are discussed by Lewis in “New Work for a Theory of Uni-

0Lewis (1986¢, p. 61). In section 4.2.1 I argue that (D3) must be revised.
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versals”, and by Anthony Quinton in “Properties and Classes”.!! In chapter
9 I discuss yet another application: in the philosophy of space and time.

Now it can be seen why I do not think the notions of this dissertation are
“subjective”. If naturalness, for example, were subjective then so too would
be all the distinctions drawn in terms of naturalness, and this is something
I would not want to admit. For example, I use naturalness in chapter 9 to
characterize the facts about the geometrical structure of physical space. If
naturalness were subjective, then so too would be the geometry of physical
space.

Although Lewis has been instrumental in bringing the notion of natural-
ness to the attention of contemporary writers, others have discussed related
notions. Demopoulos and Friedman (1985, pp. 635—7) discuss a notion of
“foundedness” that Carnap introduced in Carnap (1929). Foundedness ap-
plies to the extensions of relations that are “experienceable and ‘natural™’
(quotation from Demopoulos and Friedman p. 636). The tie between found-
edness and experienceability is a point of difference between foundedness
and Lewis’s naturalness. Quinton (1958) introduces a distinction between
natural and unnatural classes. Quinton’s naturalness comes in degrees (p.
47). However, Quinton links naturalness with human capabilities—he says
of natural classes that “people who are introduced to a few of their mem-
bers can go on to pick out others without hesitation...” (p. 47). George
Bealer has a related distinction: among the properties and relations are to be
found an elite minority of “qualities” and “connections”. However, Bealer’s
distinction does not admit of degrees and is tied to human perception. See
Bealer (1982, pp. 177-83). Quine ties the notion of a natural kind to simi-
larity, subjunctive conditionals, and causation in Quine (1969). He takes a
characteristically dim view of these notions. Also, D.M. Armstrong’s theory
of sparse universals, as presented in Armstrong (1978a,b), has commanded
a good deal of attention, and many of the philosophical jobs for naturalness
are likewise jobs for sparse universals. See chapter 6 of this dissertation on
sparse universals.

See also Bricker (1991, 1992), although the notion of naturalness Bricker employs is an
extension of the notion I consider since it applies to “mathematical” objects.
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1.3 The Structure of the Dissertation

In this dissertation I will explore various issues surrounding our three no-
tions. I hope that this chapter has at least convinced you of the existence
and potential importance of the notions. Chapter 2 makes explicit my back-
ground metaphysical assumptions and introduces the language I will be using
throughout the dissertation to talk about entities and their properties.

In chapter 3 I take up the task of presenting a theory of natural properties
and relations. I do not define ‘natural’—rather, I distinguish and elaborate
different conceptions of naturalness, and select one on which to focus in this
dissertation.

In chapter 4 I produce a theory of various notions related to naturalness:
the notions of intrinsic properties, duplicates, internal and external relations,
intrinsic profiles, and qualitative properties and relations. I follow David
Lewis in analyzing these notions in terms of naturalness. However, because
of an issue raised in chapter 3, Lewis’s account of the relation between nat-
uralness and duplication is too simplistic. One task of chapter 4 is to make
the necessary complications. Further tasks include investigating the relation
between duplication and intrinsicality, and stating various consequences of
the definitions that I offer.

If, as I think likely, naturalness cannot be analyzed, then what is the
proper response? David Lewis expresses sympathy with the project of in-
cluding naturalness in our ontology as an unanalyzed concept. I call this
approach primitive naturalism, and while I am sympathetic to primitive nat-
uralism, I do not believe it can be incorporated into Lewis’s ontological sys-
tem. In particular, Lewis’s “class nominalism™ is the culprit; chapter 5 de-
velops this objection.

The question of whether we can analyze a notion is vague until we have
specified what concepts may be employed in the analysis. In chapter 8 I will
consider some proposed analyses of our concepts using only “quasi- logical”
notions such as modal and mereological concepts, and also spatiotemporal
concepts. But an analysis of naturalness may be possible in terms of a sparse
theory of universals.

The distinctive feature of a sparse theory of universals is that a universal is
not admitted for every meaningful predicate or every class of possible objects;
only a select few classes of objects and predicates correspond to universals.
Intuitively, a predicate expresses a sparse universal only if whenever it applies
to two objects, those objects must thereby be genuinely similar. ‘Having unit



CHAPTER 1. INTRODUCING THREE NOTIONS 12

positive charge’ may express a universal, but ‘not having unit positive charge’
would not; neither would ‘having unit positive charge or having unit negative
charge’. Certainly, ‘having a friend named “George”” would not express a
universal.

The concept of genuine similarity just alluded to perhaps requires com-
ment. Genuine similarity is 7ot just a matter of shared properties. Two
objects can share the property being owned by Ted and still not be truly
similar in any respect. Neither is genuine similarity a mere matter of shared
intrinsic properties, for completely dissimilar objects may share the intrinsic
property not being spherical.'> Now it must be granted that there are every-
day uses of the word ‘similar’ that do not express this concept that I have
called “genuine similarity”. The sentence “John and Jane are similar in that
each has a doctor for a father” seems to be capable of expressing a truth,
given an appropriate context. The meaning of the word ‘similar’ is context-
dependent. Still, I think there is an intuitive notion of genuine similarity that
is appropriately “objective”, and it is this sort of similarity that concerns us
here. Consider two perfect duplicate black marbles, x and y, and a pink
elephant z. I find it compelling to say that it is an objective fact that x and y
resemble each other perfectly, but neither resembles z.

If there are universals and they are properly sparse, then, it is claimed,
they may afford definition of ‘perfectly natural’:!?

(D4) Property P is perfectly natural iff there is some universal U such that
the set of P’s possible instances is identical to the set of U’s possible

12In section 4.2.3, principle A3, which states that the set of intrinsic properties is closed
under the Boolean operations, is shown to follow from the definition of ‘intrinsic’.

13 A variant on the universals definition of ‘perfectly natural’ should be mentioned. Some
theorists replace universals, which are supposed to identically recur as non-spatiotemporal
parts of their instances, with “particularized properties” called tropes. See Stout (1923);
Williams (1952); Campbell (1981). Suppose the universals theorist explains the similarity
of two unit positively charged protons by postulating a shared universal of unit positive
charge. The tropes theorist would say rather that there is a distinct trope of unit positive
charge for each proton. Each trope of unit positive charge is exactly similar to every other—
indeed, the similarity relation among tropes is taken as a primitive equivalence relation. The
tropes theorist offers an analog of (D4):

(Ds) Property P is perfectly natural iff there is a family of similar possible tropes S such
that the set of P’s possible instances is identical to the set of possible objects that
instantiate members of §

I will not discuss tropes further in this dissertation.
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instances

Chapter 6 critically discusses this project of analyzing naturalness in terms
of sparse universals, focusing primarily on the work of D.M. Armstrong. In
that chapter I also defend the theory of “abundant transcendent” universals
against attacks from Armstrong, for that account of universals seems well-
suited to my purposes.

In chapter 7 I will address Michael Dunn’s criticisms of Lewis’s definition
of “intrinsic’. T conclude that the criticisms are largely based on misunder-
standing.

In chapter 8 I ask questions of analysis. First, I ask whether naturalness
can be analyzed purely in “quasi-logical” terms, then whether it can be ana-
lyzed in terms of the notion of “qualitative” properties and relations. Then
I consider the question of whether intrinsicality can be analyzed in “quasi-
logical” terms. To each question I answer “no”, but in each case my evidence
is rather meager: the failure of a few proposed attempts. In the second half
of chapter 8 I consider proposals by Jaegwon Kim and Michael Slote.

In chapter 9 I will present a new application for the notion of naturalness:
the statement of “metrical realism” in the philosophy of space and time. We
realists who believe in facts about the metric structure of space, time, and
spacetime have a challenge: in what do these facts consist, and how does our
language express them? Naturalness provides a solution.



Chapter 2

Preliminaries

2.1 Metaphysical Assumptions

I want to lay out some metaphysical assumptions that I will make in this dis-
sertation. Or rather, they will appear to be my metaphysical assumptions.
On many I have no opinion, and most have no effect on the arguments in
the dissertation. Even though I do not commit myself to these assumptions,
there is still value in “taking a stand”. The alternative would be a disserta-
tion cluttered by endless qualification, restatement, etc. Better to make some
(somewhat arbitrary) assumptions. As will be clear, paraphrase of what I
say will usually be possible for those whose favorite metaphysical doctrines
are slighted. I will note some possible paraphrases in this chapter, and then
ignore them for the rest of the dissertation.

The assumptions are, for the most part, those in David Lewis’s Oz the
Plurality of Worlds. There are two reasons for this. The first is that I
have found this framework convenient. The second is autobiographical: my
thinking about the topics in this dissertation has been influenced at every
turn by what Lewis has said.

First, there are possible worlds. I presume the existence of the usual plen-
itude of possible worlds: one for every way the world could possibly have
been.

Most believe that possible worlds talk is in need of paraphrase. One way
is to find suitable entities to play the role of possible worlds. For example,
if our ontology contains propositions then we might choose to call maximal

14
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consistent propositions “possible worlds”.! In contrast, David Lewis noto-
riously takes possible worlds talk at face value: as making reference to full
blooded “concrete” entities. I do not defend Lewis’s modal realism, but I
will talk as if Lewis is right in his claim that other possible worlds are “of a
kind with” the actual concrete world. (For example, I will treat non-actual
possibilia as being parts of the worlds they inhabit.)

I need a blanket term for “concrete particular”. I choose ‘object’, reserv-
ing the broader terms ‘thing’ and ‘item’ to apply to anything whatsoever. The
actual objects include tables, people, electrons, etc. If there are points and
regions of space, electromagnetic fields, etc., then these too are objects. If
there are gods, souls, etc., then these are also objects. However, sets are not
objects, nor are properties, propositions, numbers, etc.; nor are universals
(see below).

I accept talk of non-actual objects. Excepting Lewis and a few others, the
usual wisdom is that talk of other-worldly objects is in need of paraphrase.
One strategy identifies these objects with certain properties: their essences.?
I make no commitment either way on this issue.

I assume the usual characterizations of modal notions in terms of possi-
ble worlds and objects. A statement is necessarily true if true at all possible
worlds, possibly true if true at some possible world, impossible if true at
no world. Similarly, a property is impossible if no object has it, possible if
some object has it, and necessary if every object has it.> (By ‘object’ here
I do not mean merely ‘actual object’; I mean to be quantifying over all ob-
jects.) Two properties are incompatible if no object has both; one property
entails another if every object with the first has the second; two properties
are necessarily coextensive if each entails the other.

I assume the existence of properties. Moreover, I assume that these are
properties construed “abundantly”*, and so I make no assumption that ob-
jects that share a property need be genuinely similar. I make a strong as-

!See Plantinga (1976, 1974, pp. 44—5).

2See Plantinga (1974, pp. 70-87) on the nature of essences, and Plantinga (1976, pp.
268—72) for an account of the reduction of possibilia to essences. Actually, Plantinga reduces
possible objects to essences. See below for the distinction between objects and possible
objects.

3Notice that on this terminology, a possible property might be such that it is not possible
that it is instantiated, for it might be had only by impossible objects (fusions of objects from
distinct worlds). See below for the distinction between possible and impossible objects.

4This is Lewis’s terminology—see Lewis (1986¢, p. 59 ff.)
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sumption about the abundance of properties:

Abundance for any class S of things (actual or otherwise) there is a property
P had by all and only the members of §

P may be extremely unnatural, “disjunctive”, or “gerrymandered”, but it
will still count as a property.

I will also assume that properties are individuated by necessary coexten-
sion:

Individuation if properties P and Q are such that for any object # (actual or
otherwise), # has P iff » has Q, then P=Q.

This is convenient, for it means that we may specify a property by specifying
which things have it. Again, paraphrase is available for dissenters. Where I
speak of the property had by exactly the things in set S, I can be interpreted
as referring to the conjunction of all such properties.

I make analogous assumptions for relations. Relations are individuated
by necessary coextension, and for any » > 2, and any class S of n-tuples of
things, there is a relation R such that § is the set of n-tuples that stand in R.
Moreover, I assume that for every relation R, there is an integer n > 2, and
a class of n-tuples that is the class of all and only the ‘tuples that instantiate
R’

The two assumptions, Abundance and Individuation, guarantee a one-
one correspondence between the properties and the classes of possible indi-
viduals. This means that the finitary and infinitary Boolean operations are
well-defined. For example, the conjunction of the properties in a (possibly
infinite) set S is the property that corresponds to the set of possibilia that
is the intersection of the sets of possibilia that correspond to members of §.
I will make free use of facts about these operations on properties. Mutatis
mutandis for relations.®

SWith this last assumption I eliminate infinite-place relations and multi-grade relations.
This I do for simplicity.

®A succinct summary of the formal properties of the structure consisting of the set of
properties together with the operations of finitary conjunction and disjunction, and negation
is to say that it is a complete atomic Boolean Algebra. For this structure is isomorphic to
the Boolean algebra of the class of subclasses of the class of possible objects, and so by
Theorem 5 from Halmos (1963) is a complete atomic Boolean algebra. See Halmos pp. 3—9
on Boolean Algebras, and p. 25 for material on infinitary conjunction and disjunction in
Boolean Algebras.
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A terminological note regarding ‘universal’ and ‘property’. Sometimes
these terms are used interchangeably. I reserve the word ‘property’ for the
abundant properties—the properties that obey the abundance assumption.
When I discuss ‘universals’, I leave it open whether or not they obey this
abundance assumption. Some, like D. M. Armstrong, construe universals
“sparsely”. For example, on Armstrong’s view, distinct universals do not
have disjunctions (1978b, p. 19 ff.). When I discuss sparse universals in
chapter 6, ‘universal’ must be taken to refer to a different sort of entity than
the abundant properties.

Note, however, that in chapter 6 I also discuss universals construed abun-
dantly, so that they do obey the abundance assumption. Then, I may simply
be taken to be discussing the abundant properties. I keep the term “universal’
for that discussion since Armstrong uses it in his criticisms of that view.

At times I will need to make certain “abundance” assumptions for possi-
ble worlds and possible objects. I quoted the customary slogan above: there
is a possible world “for every way the world might have been”. But what
are the different ways the world “might have been”? “Recombination prin-
ciples” are principles that help to specify what possibilities there are. They
take the form “if such and such is possible, then such and such must also
be possible”. They tell us when we can “recombine” possibilities to obtain
more possibilities. David Lewis has an excellent discussion of principles of
recombination in Lewis (1986¢, section 1.8). I do not commit myself to any
general principle of recombination; rather, when the need for recombination
arises, I will help myself to whatever particular principles seem useful and
plausible.

For each possible world, there are some objects, properties, and relations
that exist at that possible world. The objects that exist at a world are exactly
the parts of that world. I discuss existence at as applied to properties more
fully in section 3.2.1.

In the previous paragraph and throughout the dissertation I use the no-
tions of mereology: the theory of the part/whole relation.” In particular,
whenever there are some objects, I accept the existence of the mereological
fusion, or sum, of those objects—the smallest thing that contains those ob-
jects as parts. I assume that the mereological sum of some objects is itself an
object.

’See Leonard and Goodman (1940) on mereology. Also see Lewis (1991, p. 72 note §)
for more references on mereology.
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When I accept arbitrary mereological sums I introduce the possibility of
an object that does not exist at any one world. For if there is no world at
which both x and y exist, then their fusion exists at no world, for it is a part
of no world. If an object exists at some world, I call it a possible object,
otherwise it is impossible.?

In this dissertation I will be concerned only with properties and relations
of possible objects, since I am not interested in properties and relations of
impossible objects, nor in properties and relations of sets, properties, univer-
sals, etc.” When I quantify over properties and relations, I mean to quantify
only over properties and relations of possible objects. Moreover, my object-
quantifiers will always range over possible objects only; after this chapter I
will sometimes drop the qualifier ‘possible’. I will sometimes say ‘possibilia’
in place of ‘possible objects’.

I will also assume the existence of times (both intervals and instants) and
places (both points and regions). Again, I invite disbelievers to paraphrase.

I will assume the concepts of set theory, along with the assumptions about
those concepts that are captured in the Zermelo Frankel system.!© 1 will
make free use of set theoretic notation, concepts, and principles. For exam-
ple, “ANB” denotes the intersection of A and B; “A C B” means that A is a
proper subset of B. A function is a set / of ordered pairs such that no two
pairs have the same first member. If (x,y) € f, we say f(x) =y, or that y is
the “value of f for argument x”. The set of arguments of f is its domain;
the set of values for f is its range; f is said to be a function from its domain
onto its range. If we never have f(x) = f(y) unless x =y, then f is one-one.
“f o g” denotes the composition of f with g: the function 5 with the same
domain D as f such that for any x € D, h(x) = g(f(x)). Where A is the do-
main of function f and B C A, the “restriction of f to B” is the function 5
with domain B such that for any x € B, h(x) = f(x).

So much for the entities I will accept and the concepts I will employ.

8 An object that is the fusion of several possible objects, but does not itself exist at any
world is one example of an impossible object. Though this will not concern us, it is natural
to assume that there are no other kinds of impossible objects. That is, I assume that every
object is the fusion of some possible objects. Equivalently, the fusion of all the objects is
identical to the fusion of all the possible worlds.

Exceptions: I am, of course, interested in the naturalness of properties and relations,
and I will be interested, for example, in the property making for similarity which is had
by properties (see section 3.3.1). But I will not be interested in these when I quantify over
properties and relations.

10Gee, for example, Mendelson (1987, pp. 222-4).
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Next I want to discuss two metaphysical issues. Above, I said things like
“object # has property P”, rather than saying “# has P at time t” or “u
has P at ¢t at world w”. Throughout this dissertation I will always speak of
properties (and relations) of objects simpliciter, rather than relative to world
or time. This involves taking a (nominal) stand on two metaphysical issues,
one involving time, the other involving modality.

The temporal issue is that of identity through time. My assumption will
be that objects do not endure identically through time; rather, an object “per-
sists” through an interval of time by having instantaneous temporal parts in
all the instants that comprise the interval.!! This assumption allows me to
re-interpret claims that are apparently about properties had at times by con-
tinuants as claims about properties had simpliciter by time-slices.

The modal issue is that of transworld identity. My assumption will be
that each possible object exists at exactly one world. Each possible object
is confined to its own world, and hence has its properties absolutely, not
relative to one world or another.

It is standard to use “counterpart theory” to analyze de re modal predi-
cation, if possible objects are thought of as worldbound (Lewis, 1968). On
such a view, an object possibly has property P just in case that object has
some counterpart in some possible world with property P. However, de re
modality will seldom be mentioned and so counterpart theory need not con-
cern us much.

Those who disagree with these assumptions should be able to easily para-
phrase my remarks. They may construe my talk of properties had simpliciter
by time-slices as talk of properties had relative to time and world by contin-
uants. For example, suppose Fred sits at time ¢ in the actual world. Let F be
the time-slice of Fred at time ¢. I would say that F has the property sitting.
But one who disagrees with my assumptions could say rather that Fred has
the property sitting in the actual world, at time ¢.

The doctrine of temporally bound individuals raises an issue that requires
clarification. Most philosophers who accept the doctrine of temporal parts
believe that references to ordinary objects are references to fusions of many
temporal parts: “four dimensional space-time worms”.'? “Ted Sider’, on this
view, refers to the fusion of all my instantaneous time-slices throughout my
life. Consider a property I currently have: the property of sitting. According

See Lewis (1986¢, p. 202) for the “endurance”/”persistence” terminology.
121 ewis is a representative example. See Lewis (1986¢, pp. 202—4).
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to temporal parts theorists, what makes the sentence “Ted is sitting now’ true
is that the current temporal part of the referent of “Ted’, that is, my current
temporal part, has the property of sitting. Remember that the referent of
‘“Ted’ is, on this view, a 4D space- time worm that is not itself in any particular
posture simpliciter; rather, it has temporal parts in various postures. The
point I want to stress here is that many properties we attribute in common
speech, like the property of sitting, are had by instantaneous time-slices, and
not by the space-time worms we commonly refer to.

Of course, temporal continuants stand in relations corresponding to prop-
erties attributed in commonsense speech. I stand in the relation sitting at to
the time that is now current—I do this in virtue of my current time-slice pos-
sessing the property sitting. Moreover, the space- time worms themselves
have properties as well as standing in relations. Consider the property of
having a temporal part that exists at time t and is sitting, or the property of
having temporal parts that span seventy years. But even for these trans-time
fusions, the properties are had simpliciter, and not relative to any time.

There is an analogous modal point. Most properties with which we are
concerned are had by worldbound objects. The property living 70 years
is had by continuant persons bound to a world, not by transworld fusions
of persons. Moreover, that property is had by those worldbound objects
simpliciter, and not relative to this world or that. There is a corresponding
relation we might define for transworld fusions of persons, living 70 years
at, which holds between a transworld object x and a world w iff x has a part
in w that is a person who lives 70 years.

Although time and modality are analogous in many ways, there is an
interesting disanalogy. It is common among those who believe in temporal
parts to take ordinary references to physical objects as being references to
temporally extended 4D worms. But few modal realists would take ordinary
references to physical objects as being references to transworld entities (and
not merely because there are few modal realists to begin with!).!3

These, then are my metaphysical assumptions. As noted, many are made
for convenience only, and for the sake of definiteness. But even given this
disclaimer, I realize that some will find my assumptions unacceptable. Per-
haps some will find possible worlds talk, say, as being utterly incapable of
being paraphrased into an ontologically acceptable language. There is no
space here to argue this point, so this dissertation must be seen as beginning;:

13See Lewis (1986¢, pp. 218-20).
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“if you can accept my framework, then ...”. And even those who cannot ac-
cept my assumptions can perhaps find arguments that are analogous to mine
within their own systems. In sum, I hope that my discussion of naturalness,
intrinsicality, and duplication is independent of most of the metaphysical
assumptions I have made.

2.2 Language

Next I want to get clear (informally) on the language I will be using to talk
about possible worlds and their contents. Here and elsewhere, I will engage
in some use-mention sloppiness in the interest of smooth exposition.

My primary language is a possibilist language much like that discussed
by David Lewis in ‘Counterpart Theory and Quantified Modal Logic’. It
contains no modal operators; in their place we have quantifiers that range
over possible worlds (variables: w, @', etc.) and quantifiers that range over
all possible objects (variables: x, y, z, #, v, etc.). (Notice that I restrict
the latter quantifiers to possible objects.) So the sentence “VxFx” says that
every possible object, both actual and merely possible, is F. Usually, I will
use English phrases like ‘for every possible object x” instead of ‘Vx’; the latter
is only an abbreviation—it does not indicate any increased formality or level
of rigor.

Occasionally, I will make modal claims using the language of “boxes and
diamonds”; I will use locutions like “necessarily”, “possibly”, “entails”, etc.
This will usually take place when I am discussing the work of a philosopher
who uses this sort of language. In such cases, my words should be interpreted
in the way David Lewis outlines in his 1968 paper “Counterpart Theory and
Quantified Modal Logic”. For example, a de re modal claim like “x might
have had property P” means that a counterpart of x in some possible world
has property P. Moreover, when I use the language of boxes and diamonds,
my quantifiers are actualist, not possibilist. For example, if [ say “O0dxFx”
in such a context, this means that at every possible world w, there is some
possible object in w that is F.

I will also permit quantifiers ranging over properties and relations, and
corresponding variables ‘P’, ‘Q’, ‘R’ etc. These range over all properties and
relations that are had by nothing other than possible objects. I will often use
variables that have properties or relations as values as if they were predicates.
Thus, to assert that object x has property P, I will say simply “Px”. When
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discussing universals, I will use variables like ‘U’ and ‘V’; it will be clear from
the context whether the universals quantified over are sparse or abundant.

I will also employ [a nonstandard version of] “lambda abstraction”. For
example, where ¢ is some formula with exactly one free variable, x, the
expression "Ax¢ ™ shall be understood as [a term, not a predicate] denoting
the property expressed by "being an x such that ¢

Finally, I will employ the “description operator”. Thus, the term “xFx’
refers to the F if there is exactly one F. Whether this is interpreted possibilist
(“the one possible object that is F”) or actualist (“the one possible object in
such and such possible world that is F”) will depend on context. I take no
particular stand on the fate of a sentence containing such a term when there
is not exactly one F.



Chapter 3

Conceptions of Naturalness

3.1 Introduction

In this chapter I distinguish and discuss different conceptions of naturalness.

Naturalness is to be taken as a primitive, but even without giving reduc-
tive analyses it is still possible to clarify and distinguish different notions
of naturalness. I will choose one conception of naturalness as primary, and
attempt to give a rationale for this choice.

I should note that I do not intend what I say about naturalness to extend
to “abstract” entities such as numbers. This is not to say that naturalness
does not apply to abstract entities. I simply do not know how to illuminate
the application of naturalness to these items.!

I assume that naturalness comes in degrees (in section 3.4 I justify this
assumption). The primitive I will elucidate is the relation at least as natural
as, from which the relations more natural than and equally as natural as may
be defined. I discuss these relations in detail in sections 3.2.3 and 3.3.2.

The most natural properties and relations will occupy much of our atten-
tion; these are perfectly natural. A fundamental assumption about perfectly
natural properties that I will not question is the following;:

(o) Every perfectly natural property is intrinsic?

Phillip Bricker pointed out that my conceptions of naturalness do not seem to apply to
abstract entities.

2 A related principle, which I also affirm, is that every perfectly natural relation is external.
See sections 4.2.2 and 4.2.3.

23
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However, the “converse” of (o), the claim that every intrinsic property
is perfectly natural, is implausible. The property having unit positive charge
seems intrinsic, and if it is then so is its negation, the property not having
unit positive charge.> But only the former would be a serious candidate for
perfect naturalness.* The set of perfectly natural properties, then, is a proper
subset of the set of intrinsic properties.

Which proper subset? David Lewis has the following to say (1986c,
p.60):

Sharing of [the perfectly natural properties] makes for qualitative sim-
ilarity, they carve at the joints, they are intrinsic, they are highly spe-
cific, the sets of their instances are ipso facto not entirely miscellaneous,
there are only just enough of them to characterise things completely and
without redundancy...

Physics has its short list of ‘fundamental physical properties’: the charges
and masses of particles, also their so- called ‘spins’ and ‘colours’ and
‘flavours’, and maybe a few more that have yet to be discovered...What
physics has undertaken...is an inventory of the [perfectly natural prop-
erties] of this-worldly things.

This passage seems to me to contain the seeds of two distinct conceptions of
naturalness:

Conception 1 naturalness as fundamentalness

Conception 2 naturalness as the source of similarity

In what follows I investigate how Conceptions 1 and 2 characterize the
notion of naturalness. Each Conception will be explicated. As I will show,
the Conceptions are inconsistent with each other, but parts of the Concep-
tions can be shared. The goal will be to clarify the Conceptions of natural-
ness, partly in an informal intuitive fashion, and partly through articulating
various principles suggested by the Conceptions.

3The closure of the set of intrinsic properties under the Boolean operations is discussed
in sections 4.1 and 4.2.3.

4This is so on either Conception. The property not having unit positive charge is clearly
not one of the most fundamental properties, nor does it make for similarity.
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Section 3.2 contains my explication of Conception 1. In section 3.2.1 I
clarify the conception of naturalness as fundamentalness by relating the con-
cept of fundamentalness to the concepts of supervenience and microphysi-
cality, and by discussing the naturalness of “combinations” of properties. In
section 3.2.2 I discuss an important complication in a principle from sec-
tion 3.2.1. Whereas in section 3.2.1 I focus mostly on perfect naturalness,
in section 3.2.3 I discuss relative naturalness as conceived by Conception 1.

Section 3.3 deals with Conception 2. In section 3.3.1 I articulate Con-
ception 2 of perfect naturalness, and show its relation to that of Conception
1. In section 3.3.2 I do the same for relative naturalness.

In section 3.4 1 discuss the choice of a Conception, and I conclude in
section 3.5.

Before I begin, I want to make a methodological point. The goal of this
chapter is clarification of naturalness, not analysis. 1 take naturalness as
primitive because I cannot analyze it. Therefore, do not look for non-circular
necessary and sufficient conditions for a property’s being perfectly natural,
or for one property’s being more natural than another. At times I will say
things that are “circular” in the following sense: I will characterize natural-
ness by relating it to notions that [ ultimately analyze in terms of naturalness.
Another kind of “circularity”: sometimes I will relate naturalness to natural-
ness itself, or to near relatives. If such “circularity” enables the reader to fix
on naturalness, then it has achieved its purpose. Since my goal is clarification
rather than analysis, this is fair play.’

3.2 Conception 1

3.2.1 Supervenience, Microphysicality, and Property “Combi-
nations”

The first component of Conception 1 is that the perfectly natural properties
and relations are the most “fundamental” properties and relations. In the
actual world, these seem to be those investigated by physics—the “most basic
building blocks of the universe”. However, perhaps at some other worlds
the most fundamental properties are, in some sense, “non-physical”. I seek

SCompare what Sydney Shoemaker has to say about similar “circularities” in Shoemaker
(1980, pp. 123—4).
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clarification of ‘fundamental’, but I will not offer any definition. Since I
cannot define ‘natural’, neither can I define any of its synonyms.

It will be seen that the notion of the most fundamental properties and
relations is exceedingly difficult to specify. Ultimately, all I will do is discuss
principles that seem to “flow from” the identification of naturalness with the
intuitive notion of fundamentalness. The ideal situation would have been to
come up with a precise version of the notion of fundamentalness, and then
to derive the principles, but this was not to be.

I turn first to the relationship between supervenience and fundamental-
ness. Supervenience is a relation of functional dependence (Paull, 1994,
chapter 7). When A supervenes on B, this means that the instantiation of
the B- properties and relations in some sense functionally determines the in-
stantiation of the A-properties and relations.

The precise concept of supervenience I employ is one of global superve-
nience.® For any world w, denote the set of w’s objects by “D(w)”.

Where A and B are sets of properties and relations, A supervenes
on B iff for any possible worlds w, and w,, any B-isomorphism
between D(w1) and D(w?2) is also an A-isomorphism.

We say that property P supervenes on set B iff {P} supervenes on B.

We must define the notion of an A-isomorphism between sets §; and §, for
a set of properties and relations A. I will use arrows overtop of variables as
variables over finite sequences of possibilia. When x stands for a sequence
(x,...x,) and R is a relation such that R(x,...x,), then I will write: R(X).
When f is a one-place function defined over the members of a sequence ¥,
I will use “f(x)” to denote the sequence gotten from x by replacing each
member of x by the value assigned to it by f. A function f is a part-whole
isomorphism iff for any x, y in f’s domain, x is a part of y iff f(x) is a part
of f(y) (note that such a function is guaranteed to be one-one). A function f
is an A-isomorphism iff f is a part-whole isomorphism such that i) for any x
in the domain of f and property P € A, x has P iff f(x) has P, and ii) for any
sequence X of objects from f’s domain and relation R € A, R(X) iff R(f(X)).

®For references on global supervenience see Paull (1994, chapter 4 section A). The sets
A and B need not be closed under the Boolean operations (Paull and Sider, 1992, Ap-
pendix). Paull calls my formulation of global supervenience (minus the built-in part-whole
relation) “strong” global supervenience, and distinguishes it from other formulations. See
Paull (1994, chapter 4 section B).
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Finally, f is an A-isomorphism between S, and S, iff f is an A-isomorphism
from §, onto S,.

I will appeal to a few facts about (global) supervenience:”

(St) If A supervenes on B, and B C C, then A supervenes on C

(S2) If A supervenes on C, B C C, and B supervenes on C — B, then A su-
pervenes on C — B

(S3) If property P is (finitely) “definable” in terms of the properties and
relations in set § plus the part-whole relation, then {P} supervenes on

S.

(S4) Supervenience is transitive and reflexive

Where A and A’ are sets of properties and relations, say that A and A" are
“negation-images”—“N(A,A")”—iff for every property or relation P in ei-
ther set, the other set contains either P or ~P (or both). The final principle
1s:

(Ss5) If N(A,A’) and N(B,B’), then A supervenes on B iff A’ supervenes on B’

Conception 1 involves a supervenience relation between the perfect natural
properties and relations and certain other properties and relations. Once
you fix the distribution of a world’s perfectly natural properties and relations
over its objects, you have fixed the distribution of a certain wider range of
properties and relations over those objects. But, as we will now see, it is a
tricky matter to say exactly which properties and relations those are.

For example, we should not claim that all properties instantiated at a
world supervene on the set of perfectly natural properties and relations at
that world, for haecceities do not supervene on the perfectly natural prop-
erties and relations. Consider a world @ containing two objects 2 and b,
neither with any proper parts, and no other objects. For simplicity, let us

7(St) and (S4) are trivial. (S3) is proved in the appendix of Sider (1991). (S2): assume
the antecedent, and let / be a C — B isomorphism. Since B supervenes on C — B, f is a
B-isomorphism; thus, f is a C isomorphism. Thus, by the supervenience of A on C, f is an
A-isomorphism. (S5) follows from the fact that if N(C,C’), then any C-isomorphism is a
C’-isomorphism.



CHAPTER 3. CONCEPTIONS OF NATURALNESS 28

suppose that the binary spatial distance relations are the only perfectly natu-
ral relations at w, and that the only perfectly natural property at w is prop-
erty P. Suppose further that objects « and 5 are 1 meter apart, and that each
has property P. Let R be the set of perfectly natural relations at w, and let
N =RU{P}. Thus, N is the set of perfectly natural properties and relations
at w. Call the fusion of 2 and b “a + b”. Notice that D(w) = {a,b,a + b}.
Let set B contain just one property: the property of being identical to a. The
following function f is an N- isomorphism between D(w) and itself, but it
is not a B-isomorphism. Hence, B does not supervene on N:

a = b
f: b = a
a+b = a+b

Function f is clearly a part-whole isomorphism. Since @ and 4 each has P,
the only property in N, f preserves the properties in N. As for the relations,
by the symmetry in the world the function f preserves these as well. For
example, since 2 and b stand in the relation being 1 meter from, b and a
stand in this relation as well. So f is an N-isomorphism. But it is clearly not
a B-isomorphism, for a has the property being identical to a, whereas f(a)
(that is, b) does not.

The natural conclusion to draw from this example is that we should re-
quire only qualitative properties and relations to supervene on the perfectly
natural properties and relations. ‘Qualitative’ here is not supposed to be
opposed to ‘quantitative’. Rather, ‘qualitative’ is intended in the sense of
“purely descriptive”, “purely general”, and “non- haecceitistic”. Qualita-
tive properties and relations do not “involve” particular objects. The idea is
that specifying the distribution of perfectly natural properties and relations
need not fix the identities of the objects that exist there, but only the qualita-
tive facts about the world, such as the number of objects that exist there and
their qualitative properties and relations. See section 4.2.2 for information
on qualitativeness.

Say that a set S is an Q-base for a world w iff the set of qualitative prop-
erties and relations at w supervenes on §. Conception 1 seems to involve the
claim that to fix the qualitative properties and relations of a world, you need
only fix that world’s perfectly natural properties and relations:

(1) for any world w, the set of perfectly natural properties and relations
at w is a Q-base for w.
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There are complications with (1), however. One of these involves the possi-
bility of worlds with no perfectly natural properties, but I defer discussion
of this issue until the next section since there is a more pressing problem. (1)
employs the notion of a property existing at a world. This notion requires
comment.

In one sense of “exists at”, a property exists at a world iff it has an in-
stance in that world, but this is #ot the sense I intend. I will show that, thus
interpreted, (1) would be equivalent to the following:

(1?) The set of all qualitative properties supervenes on the set of all perfectly
natural properties and relations

For any world and any property or relation P, either P or its negation will
be instantiated at that world (I assume for simplicity’s sake that every world
has at least one object)®. So the set of qualitative properties and relations at
a given world will contain, for each qualitative property or relation whatso-
ever, either it or its negation. Similarly, the set of perfectly natural properties
and relations at a world will contain, for each perfectly natural property
whatsoever, either it or its negation. By (S5), (1) is equivalent to (1?).

(1?) is not what I intend. I do not deny (1?), but I want to assert some-
thing stronger. I want to assert that properties like being a hydrogen atom,
being within 10 feet of something cubical, etc. supervene on the properties
and relations of physics alone, the actual perfectly natural properties and re-
lations, without the help of alien perfectly natural properties and relations.

What, then, is it for a property to exist at a world? I myself have no anal-
ysis of this notion, and if none is to be had it should be taken as primitive.
This is not suspect, I say, for existence-at seems to be an extremely basic,
quasi-logical notion. Other such basic notions, such as the part-whole re-
lation, are legitimately taken as primitive. Each possible world has various
items that exist a¢ that world. There are the concrete objects that exist at
that world. But there are also the properties and relations that exist at that
world. And it seems to make good sense to say that not all the properties

8Even without this assumption, (1) is equivalent to (1?). Assume (1). Take any world w
with at least one object; since for every property either it or its negation is instantiated in
w, we can apply (S5) to derive (1?). Now assume (1?), and let w be any world. If w has
at least one object, then we may again use (Ss) and (1?) to derive that the set of perfectly
natural properties and relations at w is a Q-base for w. On the other hand, if w does not
have at least one object, then the same result holds, for the set of qualitative properties and
relations at w is then the null set, which trivially supervenes on every set. So, (1) follows.
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and relations that there are exist at the actual world, just as it makes sense
to say that not all the possible individuals exist at the actual world.

Though I cannot define ‘exists at’, I can say a bit about it. The properties
that exist at a world should be closed under the (infinitary) Boolean opera-
tions. They should also be closed under structural combinations (see the end
of this section). Moreover, if a perfectly natural property is instantiated at a
world, then it exists at that world.

If this notion of existence at makes sense, then (1) does not collapse to
(1?), for it is not true, given this notion of existence at, that for every property
and every world, either the property or its negation exists at the world.

Let us return to the elaboration of Conception 1. Conception 1 says
more than (1). (1) merely says that the set of perfectly natural properties and
relations at a world is a Q-base for that world. But each world has many
Q-bases. For example, by the reflexivity of supervenience (see (S4)), the set
of any world’s qualitative properties and relations will be a Q-base for that
world; moreover, if § is a Q-base for w, then by (S1) any superset of § will
be as well. The set of w’s perfectly natural properties should be the “most
fundamental” Q-base for w. As Lewis says in the quotation above, there
are only enough perfectly natural properties to characterize the qualitative
character of the world without redundancy. But what is meant by this?

If S and §’ are each Q-bases for w, and §’ is a proper subset of S, then §
seems less fundamental than §’. We do not need to make reference to all the
properties in S to characterize w qualitatively. Call § a minimal Q-base for
w iff § is a Q-base for w and no proper subset of § is a Q-base for w. We
might think to cash out the non-redundancy intuition as follows:

(1') for any world w, the set of perfectly natural properties and relations
at w is a minimal Q-base for w.

However, there is a complication, which we can call the “problem of mini-
mality”. Suppose we have some properties or relations that are, intuitively,
equally natural. Yet, given some of them, we can define the others. Suppose
for example that P, Q, and R are perfectly natural, and yet P is definable
from (and hence supervenes on, by (S3)), {Q,R}. This will violate (1’). For
suppose that S is the set of perfectly natural properties at w, and suppose
that P, Q, and R are members of S. Since {P} supervenes on {Q, R}, by (S1)
and (S2), anything that supervenes on § supervenes on S —{P} as well. Hence
§ is not a minimal Q-base for w.
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Here is a concrete instance of the problem of minimality. We need a
perfectly natural asymmetric relation. The relation temporally earlier than
seems a likely candidate. But if earlier than is perfectly natural, then surely
its converse, the relation later than, is also perfectly natural. But since earlier
than and later than are interdefinable, by (S3) each supervenes on the other.
Thus, the argument in the previous paragraph refutes (1’). This is an instance
of what we can call “the problem of permutation”, a subproblem of the
problem of minimality.

Let us introduce the concept of a “permutation” of a relation. Earlier
than is a permutation of later than. If relation B is the temporal betweenness
relation, holding between x, y, and z iff x is earlier than y which in turn is
earlier than z, then the following relation would be a permutation of B: the
relation holding between x, y, and z iff y is earlier than x which in turn is
earlier than z. Generalizing, let R be an n-place relation. R’ is a permutation
of R iff i) R' has n places, and ii) there is a one-one function f from {1,..,n}
onto itself such for any possibilia x,...x,, R(x;...x,) iff R'(xy... x7(,)-

We might try to protect (1’) from the problem of permutation by revising
the definition of ‘minimal Q-base’ as follows. A set § would be taken to be a
minimal Q-base for world w iff S is a Q-base for w, and for every §’ that is
a proper subset of S and a Q-base for w, S — §’ contains only permutations
of members of §’. Intuitively, this revision says that the only redundancy
allowed in the set of perfectly natural properties and relations at a world is
the redundancy of containing both a relation and one of its permutations.

I do not think that this revision would be ad hoc. Suppose I describe the
world by saying that a certain event e, happened earlier than another event
e,. Suppose you say instead that e, happened later than e,. In a sense, we
said the same thing—our sentences had the same factual content. There is a
single fact about the world that we described in different ways. I am quick
to grant that there is a clear sense in which we do 7ot say the same thing. On
one sense of the word ‘proposition’, we expressed distinct propositions: the
proposition that e, is before e,, and the proposition that e, is later than e,.’
But there is also a sense of ‘proposition” according to which the propositions
that e, is before e, and the proposition that e, is later than e, are identical:
the sense of ‘proposition’ on which necessarily coextensive propositions are
always identical. So, allowing R and also a permutation of R in the set of
perfectly natural properties and relations at a world seems not too distant

9A discussion with Fred Feldman was helpful here.
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from the intuition that this set shouldn’t be “redundant”.

This revision to the definition of ‘minimal Q-base’ would be unnecessary
if relations were always identical to their permutations. Timothy Williamson
argues for a special case of this thesis in his intriguing 198 5 paper “Converse
Relations”: that a binary relation is always identical to its converse. His de-
fense of this view presumably carries over to a defense of the stronger view
that a relation is always identical to each of its permutations. Though I be-
lieve that in his paper Williamson answers the obvious objections to this
thesis, I will stop short of adopting this defense against the problem of per-
mutations.!”

Even if we could solve the problem of permutation with the revision to
the definition of ‘minimal Q-base’, we would still have the more general
problem of minimality. Though I have no detailed example of which I am
certain, I cannot rule out the possibility of a violation of (1’).

For example, perhaps there are a number of spatial relations that are
perfectly natural:

point x is linearly between points y and z

points x and y are equidistant from point z
segment x is the segment between points y and z
segment x is congruent to segment y

segment x is longer than segment y

etc.

It seems open that some of these are definable in terms of others. Perhaps
there are numerous proper subsets of this set of relations, each sufficient to
define the entire set. And yet all the listed items seem equally natural.

In conversation, Phillip Bricker has emphasized a formal analogy between
the problem of minimality and the familiar existence of multiple bases for the
definition of the truth functions. We can start with negation and conjunction,
and define disjunction, material implication, and the rest. We can instead
begin with disjunction and negation. And there are other bases. None of
these choices seems the most “natural”. Perhaps there is an analogy in the
realm of natural properties.

101f this route were taken, my assumption governing the abundance of relations from
section 2.1 would have to be revised.
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Thus, I am unwilling to affirm (1’). The problem of minimality remains
unsolved, and I come to a disappointing conclusion of my discussion of the
relation between fundamentalness and supervenience.

Next, I want to discuss microphysicality. In our world at least, micro-
physicality and fundamentalness seem to go hand in hand. For example,
having spin 1/2 seems more microphysical than, and also more fundamental
than, redness. 1 think we should entertain, then, the following claim:

(2) If property or relation P is more microphysical than Q, then P is more
fundamental and hence more natural than Q

But (2) contains a term whose meaning is less than transparently clear: ‘more
microphysical’. Note the following example: let P = being an electron that
is a part of a friend of George Bush; let Q = redness. P is clearly less natural
than Q, and yet those objects that instantiate P are electrons, whereas the
objects that instantiate Q are macroscopic objects. The moral is that ‘P is
more microphysical than Q’ had better not mean merely that P’s instances
are smaller than Q’s instances.

Instead of attempting a definition of ‘more microphysical’,  would rather
consider a more precise principle. The following principle flows naturally
from the intuition that greater microphysicality entails greater fundamental-
ness, and hence greater naturalness according to Conception 1:

(3) If object x has proper parts, then some proper part of x has a property
P that is more natural than any property of x

A possible ambiguity should be pointed out. The property having unit neg-
ative charge seems like a perfectly natural property. But we often say that
macroscopic objects have a “negative charge of one” if their net charge is
equal to that of an electron. Does this force us to give up (3)? No. We
should distinguish the property of having unit negative charge from the prop-
erty having net unit negative charge. Net charge and charge may be related
as follows:

x has charge r iff x has net charge r and no proper part of x has
any net charge

x has net charge r iff the sum of the charges of parts of x is r
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Macroscopic objects have net charge but not charge. As I see it, charge
is more fundamental and hence more natural (on Conception 1) than net
charge.

Principle (3) has the virtue of circumventing the problem of defining
‘more microphysical’. It also has the virtue of bringing out possible objec-
tions to the connection between microphysicality and naturalness. Imagine
a very bland possible world called “Vanilla”.!! T call Vanilla “bland” (and
“Vanilla”) because the only intrinsic properties that exist at Vanilla are those
that involve mass.!? Properties such as the properties of charge, spin, charm,
etc. are alien to Vanilla. An objector to (3) might argue as follows. Consider
an object x from Vanilla that has proper parts. Suppose that x has mass m.
It seems that x’s most natural property would be having mass m. The ob-
jector would ask: what proper part of x could have a property that is more
natural than this? The only possible candidates are other mass properties,
and surely every mass property is as natural as every other.

I regard this as a formidable objection to (3), but I do not think it is
conclusive. The defender of (3) could make a distinction analogous to my
distinction between unit negative charge and net unit negative charge. Let
us suppose that Vanilla can be decomposed exhaustively into (mereological)
atoms—objects with no proper parts. In other words, Vanilla contains no
“atomless gunk”.!> There is, then, a certain subset of the mass properties
instantiated at Vanilla that we might call the micromass properties. Micro-
mass is had only by atoms, whereas mass is had by atoms and non-atoms
alike. More carefully,

x has micromass m =g x has mass m and x is a mereological
atom.

(Indeed, by analogy to ‘net charge’, mass might be more properly called ‘net
mass’.) It could be argued that the micromass properties are more funda-
mental and natural than the other mass properties. If this is correct, then
every non-atom x of Vanilla will have a proper part with a property more
natural than any of x’s properties. The part is any of x’s atoms, and the
property is that atom’s micro-mass. So principle (3) yields the correct result
in this case.

1T thank David Cowles and Phillip Bricker for helpful discussions about Vanilla.

12T assume the spatiotemporal relations apply to the objects at Vanilla.

13An object is atomless gunk iff it contains no atoms; i.e. iff it has no parts (proper or
otherwise) that lack proper parts.
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The evaluation of this response is a tricky affair, but I will not pursue it
further, for I think that (3) is in trouble on independent grounds. (3) entails
the following:

(3") Perfectly natural properties are had only by mereological atoms—that
is, by objects without proper parts.

But (3’) seems overly bold. Couldn’t there be a world in which a certain per-
fectly natural property P holds independently of the perfectly natural proper-
ties of parts of its instances? P might, for example, be an irreducibly mental
property.'* We believe the macroscopic qualitative properties of the actual
world to depend on the more fundamental properties of microscopic entities,
but I see no reason why this must be true of necessity. Thus, at such a world,
an object with proper parts could have a perfectly natural property. Hence,
(3') is false. The problem with (3’) (and also (3)) is that it makes a contingent
feature of our world into a necessary feature. Insofar as I understand (2), I
reject it also. The connection between naturalness and microphysicality is
contingent.

So much for the relation between naturalness and microphysicality. Next
I want to look at the naturalness of “combinations” of perfectly natural
properties and relations. Intuitively, the perfectly natural properties and re-
lations should be “simples”, not combinations. But more precision is needed.

First, Boolean combinations.!> Say that a property is conjunctive iff it
is the conjunction of two other properties (similarly for ‘disjunctive’ and
‘negative’). We must not be tempted by the following:

(?) If P is a conjunctive, disjunctive, or negative property then P is not
perfectly natural

for almost every property is conjunctive, disjunctive, and negative.!® Con-
sider the property having unit negative charge. It seems likely that this prop-
erty is perfectly natural, and yet it is the conjunction of having unit negative
charge or being a part of a green thing and having unit negative charge or not
being a part of a green thing. Also, it is the disjunction of having unit nega-
tive charge and being part of a green thing and having unit negative charge

14Phillip Bricker made this point.

ISTintend what I say about Boolean and structural combinations to carry over to relations.

16] say “almost” because the universal property had by everything is not conjunctive, and
the empty property had by nothing is not disjunctive.
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and not being part of a green thing, and it is the negation of not having unit
negative charge.

However, I do think that Boolean combinations of distinct perfectly natu-
ral properties are less fundamental and hence less natural than the originals.
I cannot derive this result. But on Conception 1 there are only supposed to
be enough perfectly natural properties to characterize things “without re-
dundancy”. Including P A Q as well as P and Q among the perfectly natural
properties seems to go against this spirit. Moreover, the property having
unit negative charge and having spin % seems, intuitively, less fundamental
than both having unit negative charge and having spin %. Physics textbooks
mention only the latter.

There are non-Boolean ways to “combine” properties and relations to
form properties. Supposing unit positive charge to be a perfectly natural
property and being ten feet from to be a perfectly natural relation, we have
the following;:

being such that something has unit positive charge
being ten feet from something

being ten feet from something with unit positive charge

These properties should not turn out perfectly natural. However, this needs
no special provision. These properties are not intrinsic and are thus ruled
out by principle (o). Clearly, each can differ between perfect duplicates.

There are, however, non-Boolean combinations that are not ruled out by
(0): structural combinations. Given certain properties and relations, we can
combine them to form a property had by an object when its parts instantiate
those properties and relations in a certain way.!”

This is best introduced by example. Begin with the properties of electron-
hood, protonhood, and a relation bonded. The property being an Hydrogen
atom is had by an object x iff x is composed of a proton and an electron
bonded to each other. In such a case, we say that being a Hydrogen atom is
a “structural combination” of electronhood, protonhood, and bonded.'®

More precisely, say that P is a structural combination of the properties
and relations in set A iff P is denoted by some sentence of the following form:

17This discussion could be generalized easily to apply to structural relations.
18For a related example, see Lewis (19864, p. 27).
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the property of being the fusion of » possible objects x; ... x, such

that ¢(x,...x,)

where 7 > 1 and ¢ is a conjunction containing only i) conjuncts with purely
mereological terms, and i) conjuncts of either of the following forms:

where 7, and 7, ..., are between 1 and 7 (inclusive), F expresses some prop-
erty in A, and R expresses some m-place relation in A.!” Say that P is a proper
structural combination of the members of A if P is a structural combination
of the members of A, but P is not a structural combination of the members
of any proper subset of A. Henceforth, by “structural combination” I mean
“proper structural combination”.

The importance of structural combinations of perfectly natural properties
and relations is that they are intrinsic. This seems intuitively correct, and is a
straightforward consequence of the definition of ‘intrinsic’ offered in section
4.2.2.2% So, principle (o) does not rule out the possibility that structural
combinations of perfectly natural properties are themselves perfectly natural.
And yet I think that such structural combinations are not perfectly natural.
Again, I cannot prove this. It simply seems to me that the property of being
a Hydrogen atom is less fundamental than electronhood, protonhood, and
bonded.

Thus, I accept:

(4) Boolean combinations of other perfectly natural properties, and struc-
tural combinations of other perfectly natural properties and relations,
are less natural than those perfectly natural properties and relations,
and hence are not perfectly natural

P This definition could be generalized by allowing infinitary definition. I do not claim
that this definition accords exactly with D. M. Armstrong’s usage of ‘structural universal’.
Notice that since I do not require 7 to be greater than 1, I count the conjunction of P and
Q as a structural combination of P and Q.

20Consider a pair of perfect duplicates. Their parts have the same perfectly natural prop-
erties and stand in the same perfectly natural relations. Thus, they could not differ with
respect to any structural combination of perfectly natural properties and relations. There-
fore, such properties are intrinsic.
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I would like to be able to derive (4) from a general principle stating that the
perfectly natural properties are “non-redundant”, but I failed to state such a
principle when I failed to solve the problem of minimality. (4) must therefore
stand on its own. Indeed, by making this claim, I intend to partially specify
what I mean when I say that the perfectly natural properties and relations
are the “most fundamental” properties and relations.

3.2.2 A Complication

In this section [ want to consider the possibility of a world at which there are
no perfectly natural properties. This will require modification of principle
(1).

It seems possible that the world might be endlessly complex. Consider a
possible world that we may call “Onion”. At each level, physical properties
decompose into still more basic physical properties. There are macroscopic
physical properties, micro-physical properties, micro-micro-physical prop-
erties...and so on forever.?!

Let me describe Onion in detail. Intuitively, every fairly natural property
at Onion is a structural combination of more fundamental properties and
the spatiotemporal relations. More carefully: i) Onion has perfectly natural
relations: the spatiotemporal relations. ii) for all intrinsic properties P, and
P, at Onion, either P, is at least as natural as P,, or P, is at least as natural
as P, (or both). iii) there is an intrinsic property P at Onion such that for
every intrinsic property Q at Onion that is at least as natural as P, Q is a
structural combination of properties at Onion that are at least as natural as
Q and perhaps spatiotemporal relations.

Here is a more concrete way my description of Onion could be true.
For any intrinsic property P at Onion that is at least as natural as the one
mentioned in clause iii) above, the following sort of description is true. P is
the property of being composed of two parts separated by 7 feet, one with
some property P,, the other with some property P,, where P, and P, are at
least as natural as P. P, in turn is the property of being composed by two
parts separated by £ feet, one with some property P;, the other with some
property P,, where P, and P, are at least as natural as P,. P, in turn is the
property of being composed of two parts separated by = feet, one with some
property Ps, the other with some property P,, where Py and P, are at least as

21 Armstrong considers such a world in Armstrong (1978b, pp. 67-8).
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natural as P;. And so on.

I believe that such a world is possible. First, there seems to be no inherent
contradiction in the idea. Second, we seem to be able to conceive what such
a world would be like in some detail. Such a world would be like an onion,
with the layers going on forever. Imagine scientists at such a world engaged
in a futile quest to discover a “bottom” to the complexity. Every property
they discover would be found to be composed of still more basic properties.
Finally, the possibility of endless complexity seems like an open possibility
even for the actual world. Once we thought that atoms were mereological
atoms. For all we knew, the smallest bits of matter were atoms of Hydrogen,
Helium, etc.—hence, we called them “atoms”. Then we learned that these
“atoms” have proper parts (protons, neutrons, and electrons), the proper-
ties of which determine the properties of atoms. Still later we learned that
protons and neutrons have still more basic parts (quarks), the properties of
which determine the properties of protons and neutrons. Perhaps this will
go on forever.

The importance of Onion is that no perfectly natural properties exist at
Onion, at least on the Conception 1 conception of naturalness. For suppose
that P, is a perfectly natural property at Onion. By (o), P, is intrinsic. Let P
be an instance of the existential quantifier in clause iii) of the description of
Onion. By clause ii), one of P and P, is at least as natural as the other; since
P, is perfectly natural, P cannot be more natural than P, so P, is at least as
natural as P.*? So by iii), P, is structurally composed of properties that are
at least as natural as it (and perhaps spatiotemporal relations). These latter
properties cannot be more natural than P, since P, is perfectly natural, so
they are as natural as P,. Thus they are perfectly natural.>® But this violates
principle (4) from section 3.2.1, which says that structural combinations of
perfectly natural properties are not perfectly natural.

This spells trouble for principle (1). Principle (1) entails that N, the set
of Onion’s perfectly natural properties and relations, is a Q-base for Onion.
But if there are no perfectly natural properties instantiated at Onion, then N
just contains the spatiotemporal relations, and hence is clearly not a Q-base
for Onion. For surely there could be two worlds satisfying my description of
Onion, each with objects standing in exactly the same spatiotemporal rela-

22Here I rely on principle (e) from section 3.2.3.

23Principle (f) from section 3.2.3 guarantees the acceptability of the inference from ‘P is
equally as natural as a perfectly natural property’ to ‘P is perfectly natural’, whether we
mean strong or weak perfect naturalness (see section 3.2.3 for this distinction).



CHAPTER 3. CONCEPTIONS OF NATURALNESS 40

tions, but with objects instantiating different intrinsic properties. Of course,
in each world these intrinsic properties will divide endlessly into more basic
intrinsic properties, but surely there could be different intrinsic properties of
this kind.

It will not do to restrict (1) by saying that if the set of w’s perfectly nat-
ural properties is nonempty, then the union of it and the set of that world’s
perfectly natural relations is a Q-base for w. Consider the following possi-
bility. World w has two regions: one region resembles Onion in having no
perfectly natural properties, but the other region does have perfectly natural
properties.

The solution I propose is to weaken principle (1) as follows:

(ra) If the set N of perfectly natural properties and relations at world w
is such that for every qualitative property or relation P at w, some
member of N is at least as natural as P, then N is a Q-base for w

To see the idea behind (ra), consider how it applies to Onion. N, the set of
perfectly natural properties and relations at Onion, contains only spatiotem-
poral relations. Is it the case that for every qualitative property P at Onion,
some relation in N is as or more natural than P? I think not, because of
considerations that arise at the end of the next section. Consider properties
from Onion’s infinite sequence of increasingly natural properties. Because of
principle (e) from the next section, none of these properties could be equally
as natural as any member of N. So each would have to be less natural. I find
this implausible, and I motivate this intuition at the end of the next section.
So, Onion doesn’t satisfy the antecedent of (1a), and hence we do not get the
incorrect result that N is a Q-base for Onion.

Notice that I have not argued for the existence of a world with no per-
fectly natural relations. The existence of a possible world like Onion, but in
which the relations come in a never-ending sequence of increasing natural-
ness, seems more controversial. I do not deny the possibility of such a world,;
I merely do not assert its existence. Onion has importance beyond (ra). We
will return to it.

3.2.3 Relative Naturalness According to Conception 1

In section 3.2.1 I focused mainly on perfect naturalness. I turn now to what
Conception 1 has to say about relative naturalness. Our basic relation is as
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or more natural. 1 symbolize this relation “>”. We have made use of the
relations equally as natural as (“~”) and more natural than (“>”). These
may be defined in a familiar way:

Definition: Px Q=4 P>QAQ>P
Definition: P > Q=4 P>QA~Q>P

Conception 1 equates naturalness with fundamentalness, but what does rel-

ative fundamentalness amount to? As elsewhere in this chapter, I have no

analysis, only intuitive pictures. I will first attempt to illuminate relative

naturalness and fundamentalness by using an intuitive notion of “distance”.

Then I will clarify the relation further by discussing its formal properties.
Again, I draw on a quotation from David Lewis: (1986c¢, p. 61)

Some few properties are perfectly natural. Others, even though they
may be somewhat disjunctive or extrinsic, are at least somewhat natural
in a derivative way, to the extent that they can be reached by not-too
complicated chains of definability from the perfectly natural properties.

To elaborate the idea in this passage I invoke an intuitive notion of “distance”
of a property from a set of properties (suggested by Phillip Bricker). Property
or relation P is “at least as close” to a given set as property or relation
Q if P can be at least as directly and non-disjunctively defined from that
set’s members as Q (that is, if there is no definition of Q from § that is
more direct and non-disjunctive than every definition of P from S). Finite
definability in terms of a set makes for closeness; if a property can only be
defined using infinitary means, this makes for greater distance. Disjunctive
definitions make for more distance than non-disjunctive ones of equal length.
(I make no attempt to say how these factors weigh off against each other in
determining closeness.)**

24The closeness relation deserves its name because of features it shares with spatial dis-
tance. A property is maximally close to itself (actually, to its unit set). Distance from a set
was, in essence, defined as distance “along the shortest path” when I said that P is as close
as Q to § if it can be defined from § at least as directly and non-disjunctively (the “paths”
here are particular definitions). Moreover, Phillip Bricker pointed out that there is a sort
of triangle inequality for particular paths. Suppose that property P is definable via path P
from set S, and that Q is definable via path P’ from SU{P}. Hence, Q is definable from
§ via what we might call the “concatenation” of paths P and P’: path “P + P’”. Think of
P + P’as being a definition of Q according to the following directions: “first define P from
S using definition P. Then keep going using definition P’ to get Q”. The triangle inequality
says that the shortest path from § to Q must be at least as short as P+ P’.



CHAPTER 3. CONCEPTIONS OF NATURALNESS 42

We can define ‘closer than’ and ‘equally as close as’ as we defined ‘more
natural than’ and ‘equally as natural as’ above.

The working idea is that relative fundamentalness is relative distance
from N, the set of perfectly natural properties and relations.

Consider the properties of the actual world as an example. I suppose
that the most fundamental properties of the actual world are the charges,
masses, spins, and the quark charms, flavors, etc., and that these are mem-
bers of N. Likewise, I assume that the spatiotemporal relations are the most
fundamental actual relations, and that they are also members of N. Of the
actual properties, closest to N (excepting the members of N themselves) are
properties like being a proton, being a neutron, and being an electron, for
these can be defined directly from N. As the distance from N increases, prop-
erties get less fundamental. In decreasing order of fundamentalness: having
unit positive charge, being a proton, being a hydrogen atom, being a water
molecule. Properties like blueness and greenness will presumably admit of
no finite definition (although they presumably supervene on N) and will thus
be further from N. And even further than these will be Nelson Goodman’s
properties of grueness and bleenness, in virtue of their disjunctiveness.”> At
the bottom are properties that do not even supervene on N at all, and hence
cannot be defined from N at all, for a property is not definable by any means,
finitary or infinitary, from a set on which it does not supervene.?®

So, the following principle initially seems attractive:

(5) property or relation P is at least as natural as property or relation Q
iff P is at least as close to N as Q is

We have the following corollaries:
(5') P> Q iff P is closer to N than Q is
(5”) P~ Q iff P is equally as close to N as Q is

However, (5) is incorrect. In worlds like Onion without perfectly natural
properties, (5) breaks down. Properties at Onion are not supervenient on N
at all, and hence not definable from it at all. So no property from Onion will

25See Goodman (1955, p. 74). Let t, be a certain fixed time. An object x is grue at time
¢ iff t <ty and x is green at ¢, or t > t, and x is blue at ¢. Similarly, x is bleen at ¢ iff ¢ <,
and x is blue at ¢, or ¢ > ¢, and x is green at .

26This follows from an infinitary version of (S3), which I do not prove.
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be closer to N than any other. But surely some properties at Onion are more
natural than others. This violates (5').

There is another difficulty with (5). Every perfectly natural property is
equally as close to N as every other, since each perfectly natural property is a
member of N and is therefore maximally close to N. (5”) implies, therefore,
that every perfectly natural property and relation is equally as natural as
every other. I worry that this result is too strong, and so I offer the following
weakened version of (5), which takes into account both of (5)’s problems:

(sa) For any set N of pairwise-equally natural perfectly natural properties
and relations, and any properties or relations P and Q that supervene
on N, P > Q iff P is as least as close to N as Q is.

Why not hold that all perfectly natural properties and relations are equally
natural? A stronger version of (5a) would have this consequence:

(5a?) For any properties or relations P and Q that supervene on N, the set
of all perfectly natural properties and relations, P > Q iff P is at least
as close to N as Q is.

Well, I do not want to claim that the view that perfectly natural properties
and relations are equally natural is false, but neither do I want to rely on
its truth. T would like to stay neutral with respect to this view, since I feel
some inclination towards the view that some perfectly natural properties
are incomparable in terms of naturalness with some other perfectly natural
properties. Consider, for example, perfectly natural properties that are alien
to our world. I see no good reason to say that those properties are equally
as natural as our world’s quark properties.

One potential reason for claiming that an alien perfectly natural property
P is equally as natural as, say unit negative charge, is that each one has a
maximal degree of naturalness. We might put this point by saying that P
and unit negative charge play identical roles in the structure of naturalness.
But I don’t think this is a good reason for claiming that P and unit negative
charge are equally natural. The fact that P and unit negative charge are each
maximally natural does not formally entail that they are equally natural,?’

271t is crucial here that by ‘perfectly natural’ I mean weakly perfectly natural (see below
for the distinction). Strongly perfectly natural properties would indeed have to be equally
natural.
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for the field of a transitive and symmetric relation can have the structure of
a forest, with different “trees” having “trunks” with bottoms (the perfectly
natural properties and relations) that are nonetheless incomparable in terms
of that relation. Perhaps there is a sense in which the degree of naturalness
P has “relative to its tree” is equal to the degree of naturalness unit negative
charge has relative to its tree (in spelling out this notion in detail, the “tree”
of a property or relation R would be taken to be the set of properties R’
comparable to R (that is, such that either R > R’ or R’ > R)). But the original
question involved comparisons of naturalness directly, and not “relative to
trees”.”

So, to maintain neutrality about the question of whether all perfectly nat-
ural properties are equally natural, I endorse (5a) rather than the stronger
(5a?). (5a) falls sadly short of offering fully general necessary and sufficient
conditions for the > relation. It leaves many questions unanswered. Sup-
pose property P supervenes on one set of pairwise equally natural proper-
ties, whereas Q supervenes on another; suppose further that neither P nor
Q supervenes on the set associated with the other property. Is either P or
Q as or more natural than the other? (s5a) is silent. Worse, it gives us no
answer to the question of when one perfectly natural property is equally as
natural as another. Still, it has value, for it relates the more natural than
relation to distance-from-a-set in a special case—with this I must be content.
The answer that (5a?) gives to the last question (namely, the answer that
perfectly natural properties are always equally natural) seems to me to be
incorrect—better not to take a stand than to take a dubious stand.

(5a) does not concern properties from Onion, for those properties, pre-
sumably, do not supervene on any set of perfectly natural properties. In-
tuitively, however, the notion of closeness should apply to properties from
Onion in the following way. If we consider a set of all the properties from
Onion with a certain degree of naturalness or more, then the rest of the prop-
erties at Onion should be more or less natural depending on how close they
are to that set. This idea may be specified as follows. For any properties or
relations P, Q, let S(P, Q) be the set of properties and relations that are more

28Suppose an actual property P is perfectly natural, but is not comparable in terms of
naturalness with some alien perfectly natural property Q. Given certain plausible recombi-
nation principles, it follows that there is some world at which both P and Q are instanti-
ated. So, at some worlds, properties that are incomparable in terms of naturalness will be
instantiated. I owe this observation to Phillip Bricker. It seems to me that there is nothing
objectionable in this.
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natural than both P and Q.

(sb) For any properties P and Q, if P and Q both supervene on S(P,Q),
then P > Q iff P is at least as close to S(P,Q) as is Q.

(5b) seems to have correct consequences for Onion’s properties. Given a
pair of properties P and Q from Onion, S(P,Q) will contain an infinity of
properties of which P and Q are structural combinations. It seems that dis-
tance from this set will determine the relative naturalness of P and Q. (5b)
also seems to have acceptable consequences for worlds containing perfectly
natural properties. When we compare, say, blueness to grueness in terms of
naturalness, (5b) instructs us to look at S(blueness, grueness). This set will
contain the perfectly natural properties and relations of the actual world,
and all properties definable from them that are more natural than both blue-
ness and grueness. It seems plausible that blueness is closer to this set than
grueness. Thus, (5b) has the correct result: blueness is more natural than
grueness.

We must include in (5b) the requirement that P and Q supervene on
S(P, Q) for various reasons. For one, if P and Q are each perfectly natural,
then S(P, Q) will be empty; if every property is as close to the null set as
every other (as seems plausible), it would then follow that perfectly natural
properties are always equally natural. Or suppose that neither P nor Q is
perfectly natural, and yet P and Q are incomparable in terms of naturalness.
It seems plausible that no property is more natural than both P and Q, and
so S(P, Q) would again be the empty set.

The purpose of (5b) is to help us fix on the notion of relative natural-
ness. However, it employs that very notion in doing so. While this perhaps
limits its value, it does not make it worthless. (5b) is a substantive princi-
ple governing naturalness, and is therefore worth asserting in an attempt to
illuminate naturalness.

So much for the intuitive picture of relative fundamentalness. Next, let
us focus on the formal properties of our three naturalness relations. Here
are some principles governing these notions:

(a) > is reflexive and transitive
(b) = is reflexive, transitive, and symmetric

(c) > is transitive and irreflexive
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(d) VP,Q~(P>QAP=Q)
(e) VP,Q[P2Q « (P >QVP x Q)]
(f) VP,Q,R{(P~ Q)=[(PZR—>Q2R)ANR=P «—R=>Q)]}

I assume (a) as a constraint on the intended interpretation of ‘>’; the rest
follow from (a) and the definitions of ‘x” and “>’.

Equally as important as principles we should accept are those that we
should reject. I think we should reject the following principle:

Connectedness YP,Q (P > QVQ > P)

Let us return to Onion, the world of endless complexity. There are no per-
fectly natural properties at Onion, only an infinite sequence S of properties
of increasing naturalness (this sequence need not increase monotonically, but
for every member of the sequence there is another more natural member).
Let us compare the naturalness of the members of this sequence and P, one
of our world’s perfectly natural properties. Either it is, or it is not the case
that P is more natural than each property in S. One of the following two
alternatives holds:

i) VQeSP>Q
iia) 3QeS~P>Q

(The ‘~’ here stands for sentence negation, not property negation). Because
of the definition of “>’, iia) is equivalent to the following:

iib) 3IQ €S (~P > QVQ > P)

But no member of S could be at least as natural as P. For suppose Q € §
and Q > P. Since P is perfectly natural, Q cannot be more natural than P;
hence, by (e), P & Q. But there are properties in § that are more natural than
Q, and so by (f) more natural than P, contradicting P’s perfect naturalness.
So iib) is materially equivalent to:

i) 3Q €S (~P>QA~Q>P)
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But ii) contradicts Connectedness, so if we can rule out i), then Connected-
ness is false.

I think that i) is false. Unfortunately, it is difficult to argue rigorously
for this since neither (5a) nor (5b) apply here. I must rest with an intuitive
judgment that it is not the case that P is more fundamental than all of the
properties from Onion. After all, the properties from Onion bear no interest-
ing supervenience relations to P. Why would they all be less fundamental? I
find it more intuitive to claim that P is incomparable in respect of naturalness
with some properties at Onion.

I deny i). But it might be objected that by definition P is more natural
than all the properties at Onion since it is perfectly natural whereas the latter
are not. A perfectly natural property, according to the objection, is one that
is at least as natural as every other property or relation.

To evaluate this objection, we must resolve an ambiguity in the term ‘per-
fectly natural’ that we have not yet discussed. We should distinguish between
strong and weak perfect naturalness:

P is strongly perfectly natural = VQ P > Q
P is weakly perfectly natural =;; ~3Q Q > P

If by ‘perfectly natural’ we mean ‘strongly perfectly natural’, then i) is indeed
true by definition. For if P is strongly perfectly natural, then (by (e)) for every
property Q € S, either P > Q or P =~ Q, and as we argued above, P cannot
be equally as natural as any property from Onion.

But of course I do not grant that P is strongly perfectly natural. When I
assumed that P is perfectly natural, I meant that it is weakly perfectly natural.
And since the very point I am arguing for is that P is #ot more natural than
all of Onion’s properties, to assert that P is strongly perfectly natural would
beg the question against me.

In fact, I don’t think there are any strongly perfectly natural properties.
A strongly perfectly natural property P would have to be at least as natural
as every property at Onion, and I don’t think there are any such properties.
P could not be from Onion (since for every such property there is one more
natural). On the other hand, I reject the existence of a property, P, alien to
Onion that is at least as natural as each of Onion’s properties. P would have
to be more natural than each of Onion’s properties, because if it were equally
as natural as one, it would be less natural than some other property at Onion
(remember principle (f)). And I reject P’s being more natural than each of
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Onion’s properties for the same reasons I had for rejecting i). Properties alien
to Onion do not seem intuitively to be more fundamental than all of Onion’s
properties. After all, the properties at Onion do not supervene on such alien
properties.

In this dissertation, by ‘perfectly natural’ I always mean ‘weakly perfectly
natural’.

Let us return to my denial of i). I have responded to one objection: that
i) is true by definition since P is perfectly natural. I now want to respond to
another objection. Someone might claim that, while 1) is not true by defini-
tion, still it is evident. P has a maximal degree of naturalness, whereas for
any property at Onion, there are still more natural properties. Doesn’t this
make P more natural than every property from Onion?

I don’t think so. Perhaps there is a sense in which P is more natural
relative to the actual world than any property from Onion is, relative to
Onion. After all, P occupies a distinguished position in the actual world—
unexceeded naturalness. No property from Onion occupies this position.
But this has nothing to do with Connectedness. Connectedness concerns
comparisons of naturalness directly between properties, not “naturalness

relative to worlds”.%’

2% have argued that there are no strongly perfectly natural properties. But one might use
a thought experiment mentioned to me by Phillip Bricker to argue that no properties are
even weakly perfectly natural (Bricker did not use the thought experiment for this purpose).
Consider a property P of quarks, an alleged (weakly) perfectly natural property. Bricker
grants that in fact, P is not a structural combination of other properties—it is, in fact, “a
simple”. But consider another world w at which Ps are always composite objects made
up of two parts standing in relation R, each with property Q. The idea here is that P is a
structural combination of Q and R at w. Mightn’t it be plausible to say that Q and R are
more natural than P? But if this is correct, then P isn’t perfectly natural after all. And this
argument seems general.

On an intuitive level, my reply is that the property Bricker imagines that “divides” into
more fundamental properties is not P, the same property from the actual world, since “sec-
ond level” properties like being a structural combination of Q and R are essential properties
of those properties that have them.

Now, for more precision. My definition of ‘structural combination’ entails biconditionals
of the form ‘P is a structural combination of Q and R iff P is the property of ...”. Now, my
assumption is that a phrase such as ‘the property of ...” picks out a property with the feature
expressed by the “..." in every world. This sort of assumption is commonplace. For example,
most people would assume that the phrase ‘the property of having both P and Q’ picks out
a property that is not merely the actual conjunction of P and Q, but rather is essentially the
conjunction of those properties. To deny this assumption would be to introduce obscurity
in the notion of transworld identity for properties.
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3.3 Conception 2

3.3.1 Perfect Naturalness

I hope that section 3.2 has helped to fix the notion of naturalness as fun-
damentalness. I turn now to Conception 2, which construes naturalness in
terms of similarity. I remind the reader that the project here is to illuminate
the primitive notion of naturalness. Thus, when I relate naturalness to simi-
larity, this is not to be taken as an analysis, but rather as an intuitive aid in
grasping just what this notion of naturalness is.

I need to say a bit about the relevant notion of similarity. Given the abun-
dant construal of properties I accept, every two objects share infinitely many
properties, and differ with respect to infinitely many more, since every ob-
ject is a member of infinitely many sets of possibilia, and likewise fails to
be a member of infinitely many sets of possibilia. But not all these shared
properties count as genuine similarities. Some properties have this feature:
when they are shared between two objects, this counts as a genuine intrinsic
similarity. Other lack this feature. For short, some properties make for simi-
larity. (Let us stipulate that a property P such that there are no fwo possible
objects x and y such that Px and Py does not make for similarity).

I remind the reader of my section 1.3 remarks on the contextual depen-
dence of the word ‘similarity’. In some contexts one might say that two
people are similar in that each was born in California. This is 7ot the sort of
similarity I mean. The notion here is one of “objective” intrinsic similarity.

At the very least, to make for similarity, a property must be intrinsic. But
not all intrinsic properties make for similarity. Disjunctions and negations of
properties that make for similarity will usually not make for similarity, and
yet disjunctions and negations of intrinsic properties are intrinsic. Which
intrinsic properties make for similarity? According to Conception 2, it is
exactly the perfectly natural properties that make for similarity:

The objection, as I construe it, involves a rejection of this assumption. It runs as follows.
i) First, we redo the definition of ‘structural combination’ to make it world-relative—P is a
structural combination of such and such properties relative to world w iff P is the property
of ...at w. ii) Then we claim that P (the alleged perfectly natural property from the actual
world) is a structural combination of Q and R at some other world w. iii) finally, we claim
that it follows that P is less natural than Q and R.

I object to step ii), for I claim that if P is a structural combination of some properties at
one world, then it is essentially so. So, if P were a structural combination of some other
properties at w, it would have to be at the actual world as well—but by hypothesis it is not.
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(6) A property or relation is perfectly natural iff it makes for similarity

(In this section I will focus on properties, although I intend the discussion
to carry over to relations. But what does it mean to say that a relation R
makes for similarity? To every n-place relation R there corresponds a prop-
erty: being the fusion of n objects that stand in R. To say that R makes for
similarity is to say that this property makes for similarity in the sense already
introduced for properties.)

The first thing to note is that part of Conception 2 must be rejected,
for it is at odds with Conception 1. Principle (4), which flows from the
intuition behind Conception 1, implies that conjunctions of distinct perfectly
natural properties are not perfectly natural. But (6) implies that conjunctions
of consistent perfectly natural properties are perfectly natural, for if two
consistent properties make for similarity, then their conjunction will as well.

(6) also seems to violate the other half of principle (4), which states that
structural combinations of perfectly natural properties and relations are not
natural. Suppose properties P and Q make for similarity. Surely the property
being the fusion of two objects x and y such that x is 1 millimeter from vy
and x has P and y has Q also makes for similarity (if it is not the impossible
property).

The most dramatic difference between the Conceptions, however, emerges
when we consider intrinsic profiles. Intrinsic profiles are maximally specific
intrinsic properties; they are shared by perfect duplicates, and perfect du-
plicates alone (see sections 4.2.2 and 4.2.3 for more on intrinsic profiles).
Clearly, intrinsic profiles make for similarity, and are therefore perfectly nat-
ural according to (6).

The situation is different with Conception 1. Intrinsic profiles are typ-
ically structural combinations of perfectly natural properties and relations.
To see this, consider a very simple object x. Let x have only two proper
parts that stand in just one perfectly natural relation: being 1 millimeter
apart; one has perfectly natural properties P and Q)j; the other has perfectly
natural properties R and S. Then, the intrinsic profile of x is the property of
being composed of two mereological atoms separated by 1 millimeter, one
of which has P and Q, the other of which has R and §. This is x’s intrinsic
profile since an object has this property iff it is a duplicate of x.>* And notice
that it is a structural combination of P, Q, R, S, and the relation being 1
millimeter apart.

30See the definition of ‘duplicate’ in section 4.2.1.
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Thus, the intrinsic profiles of certain objects are structural combinations
of the perfectly natural properties of their atomic parts, and the perfectly
natural relations between those parts. (Exceptions occur for objects with no
atomic parts, and also for objects from Onion.) Principle (4) implies that the
intrinsic profile of such an object is not perfectly natural.

Moreover, it is clear that the intuition behind Conception 1 bans intrinsic
profiles from being perfectly natural. Consider the property that specifies the
intrinsic nature of the Eiffel Tower in complete detail. Surely, this extremely
specific property would not be counted as fundamental furniture of the uni-
verse. Rather, the properties of the Eiffel tower’s small parts—charges, spins,
masses, etc.—are more fundamental.

The Conceptions can incorporate elements from each other. Although
Conceptions 1 and 2 are incompatible, each can accept a part of the other.
When I argued that Conceptions 1 and 2 are incompatible, I appealed to the
fact that (6) makes making for similarity sufficient for perfect naturalness.
But it is consistent with Conception 1 that making for similarity, while not
sufficient, is nonetheless necessary for naturalness. So I build the following
thesis into Conception 1:

(7) All perfectly natural properties and relations make for similarity

(7) joins (4) in ruling out perfectly natural properties that are negations of
perfectly natural properties. Suppose that unit positive charge is perfectly
natural. It is plausible that sharing of the negation of this property does
not count as a similarity. Surely, two objects that fail to have unit positive
charge need not resemble each other in the slightest. (Be sure not to confuse
the negation of unit positive charge with the property unit negative charge.
Most things have neither.) (7) also implies that disjunctions of perfectly nat-
ural properties will not in general be perfectly natural, although it seems
consistent with (7) that the disjunctions of some pairs of distinct perfectly
natural properties are perfectly natural. Suppose, for example, that P and
Q are two perfectly natural “very similar to each other” in the following
sense: intuitively, every instance of P resembles closely every instance of Q.
Perhaps we’d then want to say that when objects share PVQ, this counts as
a similarity.

Since Conception 1 now contains (7) and Conception 2 contains (6), it
follows that the set of perfectly natural properties and relations as conceived
by Conception 1 is a subset of the perfectly natural properties and relations
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as conceived by Conception 2. (Moreover, we can say “proper subset” since
Conception 2 allows perfectly natural conjunctions and structural combina-
tions of perfectly natural properties.)

(Note: (7) is all that David Lewis clearly affirms in the quotation at the
beginning of this chapter, so I do not attribute Conception 2 to him. But he
does express agnosticism on the question of whether structural combinations
of perfectly natural properties are perfectly natural (1986c, p. 62), so it may
be that he does not reject Conception 2. I cannot tell for sure.)

So Conception 1 can incorporate part of Conception 2. Likewise, Con-
ception 2 can incorporate part of Conception 1. I have in mind principle (1),
which states that the set of perfectly natural properties at a world is a Q-base
for that world.

In section 3.2.3 I argued that, given Conception 1 of naturalness, Onion
is a world at which there are no perfectly natural properties. This required
me to take back (1) and substitute the more complicated (1a). But given (6) as
a characterization of perfect naturalness, we can take these moves back. Any
object at Onion has an intrinsic profile—its most specific intrinsic property,>!
and it was argued above that intrinsic profiles are perfectly natural, given
(6). Onion, then, does have Conception-2 style perfectly natural properties.
Thus, I build (1) into Conception 2 of perfect naturalness.

3.3.2 Relative Naturalness According to Conception 2

In section 3.3.1 I discussed only perfect naturalness. We must now consider
how to strengthen Conception 2 to apply to the more natural than relation.

First, I want to note an extreme method, which is actually a departure
from the Conception 2 of the previous section, rather than an extension of
it. We must shift to a different similarity notion, the relation of one property
making for more similarity than another. Then we give up (6) in favor of
characterizing more natural than directly: one property is more natural than
another iff it makes for more similarity than the other.’? (Weak) perfect
naturalness is then defined as unexceeded naturalness.

The extreme version of Conception 2 differs starkly from Conception 1,
and also from what I called “Conception 2” in the previous section. Ac-

31Principles (C2) and (A1) from the next chapter together imply that every object has an
intrinsic profile.

32From his remarks on the upper end of naturalness in Armstrong (19895, p. 24), Arm-
strong seems to conceive of primitive naturalness in this way.
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cording to the new version of Conception 2, only intrinsic profiles will be
perfectly natural, for intrinsic profiles make for the highest possible degree
of similarity—duplication.?® Properties like charge, spin, mass, etc.—which
are perfectly natural according to (6) as well as Conception 1—will not be
perfectly natural on this extreme version of Conception 2.

What I will henceforth call “Conception 2” is not the extreme view.
Rather, it contains (6) as a characterization of perfect naturalness, and uses
the section 3.2.3 notion of distance from a set to characterize relative natu-
ralness. Thus, Conception 2 accepts principles (6) and (5a):

(6) A property or relation is perfectly natural iff it makes for similarity

(sa) For any set N of pairwise-equally natural perfectly natural properties
and relations, and any properties or relations P and Q that supervene
on N, P > Q iff P is as least as close to N as Q is.

In the previous section, I showed how Conception 1 could incorporate a
part of Conception 2 that dealt with perfect naturalness—principle (7). One
might hope for a similar thing for relative naturalness. Specifically one might
hope that the comparative similarity relation, which was employed in stating
the extreme version of Conception 2, could constrain Conception 1’s more
natural than relation.

Unfortunately, I doubt that this is possible. The only potential principles
of this kind seem to be the following:

(?) If P makes for more similarity than Q, then P is more natural than Q.

(??) If P is more natural than Q, then P makes for more similarity than Q

But each contradicts the claim of Conception 1 that conjunctions of perfectly
natural properties are less natural than their conjuncts.

331t is crucial here that we are concerned only with intrinsic resemblance. If we allowed
general qualitative resemblance (thereby allowing qualitative relational properties to af-
fect resemblance), then the maximum degree of resemblance would not be duplication, but
something stronger: what Lewis calls indiscernibility. See Lewis (1986¢, p. 63).
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3.4 Choosing a Conception of Naturalness

We have a primitive, the relation more natural than, and two main competing
Conceptions of that primitive.>* Let me summarize them.

On Conception, 1, ‘more natural than’ means ‘more fundamental than’.
The most natural properties are the most fundamental properties—at our
world, the fundamental properties of physics. As well as being most funda-
mental, these properties make for similarity. Boolean and structural combi-
nations of perfectly natural properties are not perfectly natural. For proper-
ties in worlds like the actual world, if one property requires a more lengthy
or disjunctive definition from the perfectly natural properties than another,
then it is less natural. In many worlds, the set of perfectly natural properties
and relations is a Q-base for that worlds. But some worlds, like Onion, do
not contain any perfectly natural properties, only a sequence of properties
with ever-increasing naturalness. The set of perfectly natural properties at
such a world is not a Q-base for it.

On Conception 2, ‘perfectly natural’ means ‘makes for similarity’. Con-
ception 2’s perfectly natural properties include the perfectly natural proper-
ties of Conception 1, and more besides. While negations and disjunctions of
perfectly natural properties are not perfectly natural, conjunctions and struc-
tural combinations of perfectly natural properties are perfectly natural.>> As
for other properties, they are more or less natural depending on how directly
and non-disjunctively they may be defined in terms of the perfectly natural
properties. At any world, the set of perfectly natural properties and relations
is a Q-base for that world.

We also have a dark horse in the competition: the extreme version of
Conception 2. On this version, ‘at least as natural as’ means ‘makes for at
least as much similarity’. So, the more intrinsically specific a property is, the
more natural it is. The perfectly natural properties are the intrinsic profiles;
properties like charge, mass, etc. lag far behind.

341t should be noted that by accepting a Conception, one does more than single out a
notion of naturalness. The Conceptions relate naturalness to many different concepts, thus
relating the latter concepts to each other. For example, by accepting the existence of the
Conception 1 notion of perfect naturalness, one would thereby assert that the most funda-
mental properties make for similarity.

39Exceptions: as noted in section 3.3.1, there may be a case for some perfectly natural
disjunctions of perfectly natural properties. And if a conjunction or structural combination
of perfectly natural properties is the impossible property, then it is not perfectly natural.
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One could accept three notions of naturalness, one for each Conception.
But economy would have us choose. I choose Conception 1. What reasons
could there be for favoring one Conception over another?

The less we understand a primitive, and the less we can illuminatingly
characterize it, the worse it is to accept. Each Conception has deficiencies
on this score. First, the notion of closeness to a set, which was used to
characterize more natural than for Conceptions 1 and 2, is suspect. I said
that disjunctiveness and length of definition made for greater distance. But
how do these factors play off each other? Let N be the set of perfectly natural
properties. Is a simple disjunction of two members of N closer to or farther
from N than a more complicated structural combination of members of N?
I don’t know.

Conception 1 employs the notion of fundamentalness, and our grasp of
this notion might be doubted. The paradigm cases for comparisons of fun-
damentalness come from the actual world: redness is less fundamental than
being a bydrogen atom which is less fundamental than having unit negative
charge. But we must abstract away from various features of the actual world
to form the general concept of fundamentalness. For example, this sequence
of increasingly fundamental properties from the actual world also seems to
be one of increasingly “microphysical” properties, and I claimed in section
3.2.1 that microphysicality and fundamentalness are only contingently coin-
cident. Moreover, the properties in the example are all physical. Can we be
sure that we have a general concept of fundamentalness?

Likewise, Conception 2’s notion of making for similarity seems question-
able. First, the very notion of objective similarity is dark to some. Moreover,
even though I do not suppose the all-or-nothing notion of making for simi-
larity to be defined in terms of an underlying notion that comes in degrees,
it still seems fair to ask: how much similarity must a property guarantee to
make for similarity? For example, does crimson make for similarity? What
about redness? What about still more broad color ranges?

Consider a world that we might call “Color”. Color is somewhat like
Onion in that it has a long sequence of properties that divide into other
properties (but unlike Onion, this sequence comes to an end—see below.) In
Color, properties (beyond a certain point of naturalness) are determinables
of more specific determinates. (I call this world “Color” because the prop-
erties are like colors—determinables of determinates.) So, for example, P is
a disjunction of P,...P, . But each of the P, is a disjunction of Q;s, each of
which are disjunctions...until finally we reach properties that are maximally
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specific: intrinsic profiles. We may stipulate that as we continue along this
sequence, the properties make for more and more similarity.

To accept Conception 2, we must accept that at some point along the
sequence, the properties begin to make for similarity. Unless by ‘makes for
similarity” we mean ‘makes for perfect similarity’, the cutoff point must be
before the end of the sequence. But surely this is arbitrary. There is no
privileged cutoff point before the endpoint. So the primitive notion of perfect
naturalness, on Conception 2, is suspect.

If we do place the cutoff point at the only non-arbitrary place, the end-
point, then we will have collapsed Conception 2’s notion of perfect natural-
ness into that of the extreme version of Conception 2 from section 3.3.2.
For according to the extreme version of Conception 2, the perfectly natu-
ral properties are those that make for the maximum amount of similarity,
namely, the intrinsic profiles. By ‘Conception 2°, I will continue to mean
the more moderate version which allows perfectly natural properties that do
not make for perfect similarity. This version is the one that is subject to the
objection.

It might be replied that making for similarity is vague, but that this does
not mean that the notion is ill-understood. We understand plenty of vague
notions just fine.* I find this response objectionable for two main reasons.
First, vagueness in the concept of naturalness might translate into vagueness
of concepts that are analyzed in terms of naturalness, and some of these do
not seem vague. For example, in section 4.2.1, I give an analysis of dupli-
cation in terms of naturalness. In chapter 9 I give an account of physical
distance in terms of naturalness. David Lewis characterizes notions of law-
hood, causation, and materialism in terms of naturalness in “New Work for
a Theory of Universals”.

Secondly, I find it misleading to call the dubiousness of makes for sim-
ilarity “vagueness”. This gives the impression that the only trouble is that
we cannot find a precise cutoff point—we have a rough idea of how much
similarity a property must ensure to count as making for similarity; we just
can’t say exactly how much. This isn’t the right picture at all. We have a
continuum of amounts of similarity ensured. At one end are properties that
ensure perfect similarity. At the other end there are properties that ensure no

361 do not mean to suggest the existence of vague properties. When I say that a notion
is vague, what I mean is that we have a phrase such that it is vague exactly which prop-
erty is expressed by it. To me, the idea of real, non-linguistic “vagueness in the world” is
unintelligible.
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similarity. There are no distinguished halfway points, not even distinguished
halfway regions. So, it seems to me that the “looseness” in Conception 2’s
perfect naturalness is severe, and thus it is unfit to take as primitive. We
wouldn’t understand the primitive.

How does this affect Conception 1? I related Conception 1 perfect nat-
uralness to the all-or-nothing notion of similarity by accepting (7). Since
I have argued that the notion of making for similarity is ill- understood,
(7) can do its part of illuminating naturalness less well than we might have
thought. Fortunately, (7) is not at the heart of Conception 1. The heart of
that Conception is the notion of fundamentalness, which is unaffected by
trouble with similarity.

Notice that the extreme version of Conception 2 is not affected by this
problem, since it doesn’t appeal to an all-or-nothing notion of similarity. All
it appeals to is the relational notion makes for at least as much similarity as.

My first reason to prefer Conception 1 over Conception 2, then, is that
Conception 2’s notion of making for similarity is ill-understood and arbitrary
seeming. I have a second reason for preferring Conception 1 that involves
the nature of its primitive notion. Primitive naturalness on Conception 1 is
a more “natural” and “unified” notion than on Conception 2. Perfect natu-
ralness on Conception 2 involves similarity. But relative naturalness on that
conception seems entirely different—it was illuminated by appeal to distance
from N, the set of perfectly natural properties and relations. Distance from
N seems to have nothing to do with similarity.

In contrast, I think there is a certain unity to the overall explanation
of Conception 1 naturalness. Throughout I invoked the intuitive notion of
fundamentalness. The most natural properties are the most fundamental
properties, and a property is at least as natural as another when it is at least
as fundamental. True, to explain relative naturalness I appealed to distance
from a set. But this, it seems to me, just was an explanation in terms of
relative fundamentalness.

The extreme version of Conception 2 has this same unity, since it explains
both relative naturalness and perfect naturalness in terms of similarity. So
again, the extreme version of Conception 2 fares better than its more mod-
erate cousin.

After considering the nature of a primitive itself, we may consider the
nature of the resulting theory. One consideration is the simplicity of that re-
sulting theory. On the surface, the honors here go to Conception 2, because
of the existence of Onion, the world of endless complexity. On Conception
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1, there are no perfectly natural properties at Onion; this required jettison-
ing the simple principles (1) and (5). Moreover, it complicates other theory
besides; see section 4.2, especially the definition of ‘duplicate’.

However, I think that this is not a real advantage for Conception 2.
Onion represents a genuine complication in the theory of naturalness, and
Conception 2’s way around it is cosmetic. As we saw, Conception 2 patches
over the problem by its dubious all-or-nothing primitive makes for similar-
ity.

The extreme version of Conception 2 affords a very simple definition
of ‘duplicate’. As we noticed in section 3.3.2, perfectly natural properties
on this view will be, simply, intrinsic profiles. Objects are duplicates iff
they share intrinsic profiles (see principle (C2) from section 4.2.3); more-
over, each object has exactly one intrinsic profile (this, too, follows from
(C2)—assuming as I do that necessarily coextensive properties are identi-
cal). Therefore, every object has exactly one perfectly natural property on
this Conception, and duplicates are those objects that have the same perfectly
natural property.

The final and most important consideration in deciding on a Conception
is the strength of the resulting theory. Here, I have a programmatic reason for
preferring Conception 1. I suspect that Conception 1 is more powerful than
Conception 2, and more powerful than the extreme version of Conception
2. (This latter claim is important, since the extreme version of Conception 2
has, so far, high marks in this competition.)

Some of the tasks accomplishable by Conception 1 seem beyond the reach
of both versions of Conception 2. For example, the very notion of a most
fundamental property is intuitive. It is a natural and common view of physics
that its goal is to seek out a complete description of the world in terms of
the most fundamental properties. We have here a concept that should be
acknowledged by ontology. Conception 1 acknowledges it (albeit by taking
it as a primitive). But it is hard to see how Conception 2 can reconstruct this
notion. According to Conception 2, the set of perfectly natural properties
contains many properties in addition to the most fundamental properties.
How could we sort out the most fundamental? And according to the extreme
version of Conception 2, the perfectly natural properties are intrinsic profiles,
which are not very fundamental at all. In each case, we are left without the
notion of the most fundamental properties.

On the other hand, I suspect that Conception 1 can do all the work of
Conception 2. The theoretical complications introduced by Onion, while
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irritating, seem surmountable (see section 4.2 in addition to principles (1a),
(s5a), and (5b) from this chapter). And I have hopes that making for similar-
ity can be analyzed using Conception 1 naturalness, at least after the “loose-
ness” in the notion is resolved. We have two clear sufficient conditions for
P’s making for similarity, however the looseness is resolved: P’s being per-
fectly natural, and P’s being an intrinsic profile. We know that consistent
conjunctions and structural combinations of properties that make for simi-
larity themselves make for similarity. Here, however, the presence of Onion
complicates matters. A full discussion of this issue is beyond the scope of
this dissertation.

(A final aside: at this point we can make good on an earlier promise. In
section 3.1 I said that naturalness is best thought of as coming in degrees.
Now we can see why. Whether we accept Conception 1 or Conception 2,
if we accepted only an all-or-nothing notion of naturalness, we would be
committed to an unappealing arbitrary cutoff point. For Conception 1, it
would mean accepting an arbitrary cutoff point of fundamentalness in the
sequence of properties from Onion. For either the extreme or the moderate
version of Conception 2, it would be an arbitrary cutoff point of amount of
similarity ensured in the sequence of properties from Color.?”)

3.5 Conclusion

I have chosen Conception 1. But I must admit that my grasp of the notion of
naturalness is uneasy. The project of clarifying naturalness was fraught with
difficulty—I seemed to get as many negative results as positive. The possibil-
ity of Onion, the world of endless complexity, further complicated matters.
In the next chapter I analyze duplication, intrinsicality, and other notions in
terms of naturalness, but why not forget about naturalness altogether, and
take one of those notions as a primitive instead? The leading candidate, 1
think, is duplication. We could go straight to duplication, rather than taking

37 Another impetus for degrees of naturalness is that they seem to be required for one of
the applications of naturalness: in determining the content of thought. See Lewis (19830,
pp. 370—7) and Lewis (1984, pp. 227-8). But the acceptability of Lewis’s solution has been
questioned by Phillip Bricker in conversation, at least given Conception 1 of naturalness.
The worry is that naturalness conceived as fundamentalness might not match up with eli-
gibility for being thought about. Perhaps a property that clearly is not expressed by one of
our predicates is more fundamental than the intuitively correct candidate.
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the long road through naturalness. In contrast to the notion of a natural
property, the notion of duplication, to me at least, is perfectly clear.

This would be a bad idea, for we need naturalness. It does work that
duplication and intrinsicality do not. First, some conception of naturalness
seems to be required to analyze making for similarity (after the looseness
in that notion has been eliminated). Any two objects will share an infinity
of intrinsic properties; moreover, objects can share a property that makes
for similarity without being duplicates. How to analyze similarity in terms
of intrinsicality and duplication, then, is at least not obvious. Secondly, as I
claimed in the previous section, the concept of “fundamentalness” is an intu-
itive one that must be acknowledged by ontology. Finally, Lewis’s solution to
the problem of the content of thought and language requires naturalness.*

Naturalness will not go away. But if it could be analyzed in terms of
intrinsicality or duplication plus concepts of supervenience and the like, then
we could have a clear primitive—duplication—and still reap all the benefits
of naturalness. It would be nice, then, to have a principle of the form:

P is more natural than Q iff

where the right side is stated in terms of duplication, supervenience, the part-
whole relation, etc. However, I have found such a principle hard to come
by.? So it seems that we’d better stick with naturalness as our primitive and
make sense of it as best we can.

38See Lewis (1983b, pp. 370—7), and especially Lewis (1984). But see the previous note
on the content of thought.

3For example, in section 8.1 I show how various attempts to define ‘natural’ in terms
of ‘supervenience’ and ‘qualitative’ fail. These attempts fit the schema in the text since
‘qualitative’ is definable in terms of ‘duplicate’—see section 4.2.2.



Chapter 4

Intrinsicality, Duplication, and
other Notions

In this chapter I lay out a theory of intrinsicality, duplication, and other
notions based on the notion of naturalness. In section 4.1 I investigate the
claim that ‘intrinsic’ and ‘duplicate’ are interdefinable; it turns out that they
are, given the intended interpretation of those terms. So, if we succeed in
defining either we thereby define both. In sections 4.2.1 and 4.2.2, following
the strategy of David Lewis, I use naturalness to analyze these two notions,
as well as the notions of internal and external relations, intrinsic profiles,
and qualitative properties and relations. In particular, it will be seen that the
definition of ‘duplicate’ is not as straightforward as Lewis suggests. Finally,
in section 4.2.3 I derive various consequences of the definitions.

4.1 Intrinsicality and Duplication Are “Interdefinable”
Lewis says there is a “circle of interdefinability” between the terms ‘dupli-
cate’ and ‘intrinsic’ (19834, p. 197). We may begin with the notion of a
duplicate and go on to characterize intrinsic properties as follows:

(D1) P is intrinsic iff P can never differ between duplicates

Or, we may begin with intrinsicality, and define ‘duplicate’:

(D2) x and y are duplicates iff they have the same intrinsic properties

61
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We have given two equivalences relating intrinsicality and duplication. To
say that these notions are “interdefinable” via these two equivalences is to
say that whichever of the equivalences we regard as a definition, the other
may be derived as a consequence of that definition.

Suppose we begin with one of the equivalences as a definition. In what
sense must we be able to “derive” the other? The material conditional whose
antecedent is (D1) and whose consequent is (D2) is no theorem of formal
logic; neither is its converse.

Background principles constraining the interpretation of ‘intrinsic’ and
‘duplicate’ must be used. I intend to investigate just what assumptions about
the notions of duplication and intrinsicality must hold in order for ‘intrin-
sic’ and ‘duplicate’ to indeed be interdefinable. These assumptions must be
weak in order for us to legitimately regard ‘intrinsic’ and ‘duplicate’ as be-
ing interdefinable via (D1) and (D2). In fact, I think that the assumptions
must be analytic —true in virtue of the intended meanings of ‘intrinsic’ and
‘duplicate’. Fortunately, the necessary assumptions are indeed analytic.

First some terminology. When x and y are duplicates, I will say “Dup(x,y)”.
When x and y share all properties in a set S (that is, when VP € S (Px «— Py))
I will say that x and y are S-indiscernible (“S-Ind(x,y)”). Let I be the set of
intrinsic properties.

Suppose we take ‘duplicate’ as undefined. We then regard principle (D)
as a definition of the term ‘intrinsic’. The task is to derive principle (D2). It
is trivial to show one direction of the equivalence: if x and y are duplicates,
then it follows from (D) directly that they have the same intrinsic properties.

The other direction is less trivial: if x and y share all intrinsic properties,
then they are duplicates. The assumption we need is:

(A1) duplication is an equivalence relation

For suppose that 7-Ind(x,y), and consider the property being a duplicate of
x; (i.e. Ay(Dup(x,y))).! By (A1), the duplication relation is reflexive, so x
has this property. If we can show that this property is intrinsic, then since
I-Ind(x,y), y has the property as well, and hence Dup(x,y).

The proof that being a duplicate of x is intrinsic uses (A1); specifically,
the transitivity and symmetry of duplication. Recall that we are presently

!By “‘Ay(Dup(x,y))’ I mean the property had by object y iff y is a duplicate of x, not the
roperty had by object y iff y is a duplicate of the counterpart of x in y’s world. See section
property y yury p p Y
7.1.3 for more on this distinction.
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regarding ‘intrinsic’ as being defined by (D1), so we must show that this
property can never differ between duplicates. So suppose Dup(z,w); we
show that z has the property being a duplicate of x iff w has this property.
Suppose that z has the property; i.e. Dup(x,z). By transitivity, Dup(x, ),
so w has the property being a duplicate of x as well. On the other hand, if
w has the property, then Dup(x, w); by symmetry, Dup(w, x); by transitivity,
Dup(z, x); by symmetry, Dup(x, z); hence, z has the property.

Assumption (A1), we have seen, is sufficient for deriving (D2) when we
assume (D). Indeed, it is necessary as well. (D2) trivially implies (A1), since
the relation having the same intrinsic properties is an equivalence relation.

(A1) is not news. Anyone who understands the concept of duplication
knows that it is an equivalence relation. So, it seems that when we take ‘du-
plicate’ as a primitive and define ‘intrinsic’ as in (D 1), an analytic assumption
governing the behavior of our primitive concept guarantees the desired rela-
tion between duplication and intrinsicality.

Now let us take ‘intrinsic’ as the primitive and regard (D2) as the defini-
tion of ‘duplicate’. We must derive (D1) from (D2). As before, one direction
is easy: if P is intrinsic then it follows trivially from (D2) (now taken to be a
definition) that P can never differ between duplicates.

The other direction is less trivial. We must show that any property that
can never differ between duplicates is intrinsic. The conjunction of the fol-
lowing two assumptions is necessary and sufficient for this derivation:

(A2) If property P is necessarily coextensive with an intrinsic property then
P is intrinsic.

(A3) The set of intrinsic properties is closed under negation and (infinitary)
conjunction?

Notice that (A2) is a direct consequence of an assumption from chapter
2: that necessarily coextensive properties are identical. Notice also that an
equivalent way of stating (A3) is that / is identical to its Boolean closure.
We need more terminology. Let us write “NC(P, Q)” when Vx(Px«—Qx)
(that is, when properties P and Q are necessarily coextensive). Let us write
“I(P)” when P is intrinsic. For any set of properties S, let BC(S) be the

2Phillip Bricker pointed me in the direction of A3. Notice that (A3) makes necessary and
impossible properties intrinsic.
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Boolean closure of S—the smallest superset of S that is closed under negation
and (infinitary) conjunction.

For brevity I use the concept of strong supervenience. For any sets A and
B, A strongly supervenes on B (“sv(4, B)”) iff VxVy[B-Ind(x,y)—A-Ind(x,)].
It is well known that:3

(K) if sv(4,BC(B)) then YP € A3Q € BC(B) NC(P, Q)

First, we need to show that (A2) and (A3) together are sufficient for the
derivation. Let P be a property that never differs between duplicates; we
must show that P is intrinsic:

1. VxVy[Dup(x,y)—(Px <> Py)] Ass.

2. VxVy[l-Ind(x,y)—(Px < Py)] 1,(D2)
3. sv({P},1) 2

4. I=BC(I) (A3)

5. sv({P},BC(])) 35 4

6. 3Q e BC(I) NC(P,Q) 5, (K)
7. 3Q €l NC(P,Q) 4,6

8. I(P) 7, (A2)

Next, we show that (A2) and (A3) are individually necessary for deriving
(D1), when we assume (D2). That is, we show that the conjunction of (D1)
and (D2) implies each. First, (A2):

1. NC(P,Q) Ass.

2. 1(Q) Ass.

3. VxVy[Dup(x,y)—(Qx —Qy)] 2, (D1)
4. VxVy[Dup(x,y)=(Px <> Py)] 1,3

5. I(P) 4, (D1)

3See Kim (1984, p. 49). This paper introduced the concept of strong supervenience. The
formulation of strong supervenience I use is from Kim (1987, p. 317).
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Next, (A3). We must show that / = BC(Z). Trivially, I C BC(]). It remains
to show BC(/) C I:

1. PeBC(]) Ass.

2. VxVy[BC(I)-Ind(x,y)—(Px < Py)] 1

3. VxVy[BC()-Ind(x,y) <= I-Ind(x,y)] Fact*
4. YxVy[I-Ind(x,y)—(Px < Py)] 2,3

5. VxVy[Dup(x,y)—(Px <> Py)] 45(D2)
6. Pel 5, (D1)

Are these assumptions weak enough so as not to jeopardize the claim that
‘intrinsic’ and ‘duplicate’ are interdefinable via (D1) and (D2)? I think they
are. Just as assumption (A1) was a consequence of the intended meaning
of ‘duplicate’, assumptions (A2) and (A3) are consequences of the intended
meaning of ‘intrinsic’: a property “had purely in virtue of its instances’ in-
trinsic natures”. Of course, there may be other conceptions of intrinsicality
according to which (A2) and (A3) fail. On these conceptions, perhaps ‘in-
trinsic’ and ‘duplicate’ are not interdefinable.’

When we take ‘duplicate’ as a primitive and define ‘intrinsic’ via (D1),
we can derive (D2) using (A1), a consequence of the intended meaning of
‘duplicate’. When we take ‘intrinsic’ as a primitive and define ‘duplicate’ via
(D2), we can derive (D1) using (A2) and (A3), consequences of the intended
meaning of ‘intrinsic’. Thus, the assertion that ‘duplicate’ and ‘intrinsic’ are
interdefinable via (D1) and (D2) is justified.

4.2 Duplication and Beyond

In the present section I use naturalness to define various terms I use in this
dissertation: ‘duplicate’, ‘intrinsic’ ‘intrinsic profile’, ‘qualitative’, etc. Some
of these definitions have already been discussed. I will then note various
consequences of the definitions.

*It is a fairly straightforward consequence of the definition of ‘Boolean closure’ that for
any set S, S-Ind(x,y) iff BC(S)-Ind(x,y). See Paull and Sider (1992, Appendix, part one).
3See section 7.1.2.
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4.2.1 Duplication

Following David Lewis, I begin by defining ‘duplicate’ in terms of ‘natural’.
But I do not accept Lewis’s definition (1986¢, p. 61):

...two things are duplicates iff (1) they have exactly the same perfectly
natural properties, and (2) their parts can be put into correspondence
in such a way that corresponding parts have exactly the same perfectly
natural properties, and stand in the same perfectly natural relations.

I state Lewis’s definition as follows. For simplicity, in this chapter I count
properties as 1-place relations and take a one place sequence (x) to be simply
x.

(DP1) x andy are duplicates = there is a one-one correspondence f between
x’s parts and y’s parts such that for any perfectly natural relation R and
for any sequence ¥ of parts of x, R(X) iff R(f (X))

In what follows I would like to discuss various aspects of (DPr). First, I
would prefer to add the condition that the correspondence f be a part-whole
isomorphism (see section 3.2.1). This requirement would be redundant if the
part-whole relation is perfectly natural, but since I am not sure of this, I think
it should be built in explicitly.

Secondly, Lewis suggests that the definition might be simplified if we al-
lowed that structural combinations of perfectly natural properties are per-
fectly natural. The simplified definition says that x and y are duplicates iff
they have exactly the same perfectly natural properties (Lewis, 1986c¢, pp.
61-62). Without structural perfectly natural properties, we cannot simply
require that duplicates share all perfectly natural properties. For example, if
the perfectly natural properties in the actual world are properties involving
charge, spin, charm, etc., then actual macroscopic objects will not have any
perfectly natural properties. Any two macroscopic objects would vacuously
be duplicates. But if there are structural perfectly natural properties, then
differences in the perfectly natural properties and relations of the parts of
macroscopic objects will translate into differences in the structural perfectly
natural properties of those macroscopic objects. Hence, the possibility of
simplification of (DP1). However, in 3.2.1 I argued that structural combi-
nations of perfectly natural properties are not perfectly natural, and so I do
not simplify the definition of ‘duplicate’.
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In fact, considerations raised in section 3.2.2 by Onion, the world of
endless complexity, show that (DP1) is too simple. Consider any two objects
from Onion whose parts stand in the same perfectly natural relations (that
is, spatiotemporal relations, as these were stipulated to be the only perfectly
natural relations at Onion). Recall that no perfectly natural properties are
instantiated at Onion, so no part of either object has any perfectly natural
properties. According to (DP1), it follows that these objects are duplicates.
But surely they need not be. As we divide either of the objects up into smaller
and smaller parts, there will be a sequence of increasingly natural properties
had by these parts. The two objects could have entirely different sequences.

(DP1) implies that any two “spatiotemporal isomorphs” from Onion are
duplicates, so it must be modified. For x and y to be duplicates we ought
to require more than that the parts of x and y share perfectly natural prop-
erties and relations. Objects from Onion have properties that come in a
never-ending sequence of naturalness. We ought to require of duplicates
from Onion that, roughly, at some point along this sequence their parts be-
gin to share all properties and relations, and continue to do so for the rest
of the sequence.

However, it is not a trivial matter to make this intuition precise. We might
think to proceed as follows. Let the variables ‘R’, ‘R”, and ‘R”” range over all
relations—including 1-place relations as per our convention for this chapter.

(DP2?) x and y are duplicates = there is a part-whole isomorphism f between
the set of x’s parts and the set of y’s parts such that VR(IR’ > R)(VR" >
R’), for every sequence x of parts of x, R"(xX) iff R”(f(%))]

To get an idea of how (DP2?) is supposed to work, consider first how (DP2?)
applies to a simple case, a case that the original definition (DP1) handles
correctly. Let x be composed of two mereological atoms x, and x,; similarly,
let y be the fusion of two atoms y, and y,. Suppose that neither x nor y
has any perfectly natural properties. Suppose further that x, and x, stand
in perfectly natural relation R, as do y, and y,; also suppose that all four
atoms have perfectly natural property P. Suppose further that none of the
four atoms have any other perfectly natural properties, nor do they stand
in any other perfectly natural relations. Finally, suppose that none of these
objects have any Onion-like properties or relations that divide endlessly into
increasingly natural properties and relations.
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In this case, (DP2?) has the intuitively correct result: that x and y are
duplicates. For let f be the following part-whole isomorphism between the
set of x’s parts and the set of y’s parts:

flx) = »
f(xz) = N
fx) =y

It is clear that the right hand side of (DP2?) holds for this choice of f. The
parts of x and y have the same perfectly natural properties and stand in the
same perfectly natural relations, under this function f. So, if the first variable
‘R’ on the right side of (DP2?) is assigned any property/relation Q such that
some perfectly natural property or relation Q’ is at least as natural as it, then
we satisfy the rest of the right hand side by assigning Q' to the existentially
quantified variable ‘R”. On the other hand, if ‘R’ is assigned some property
or relation Q such that no perfectly natural property is at least as natural
as it, then ‘R” may simply be assigned Q. Why? Because in this case, Q,
and everything as or more natural than Q, will be Onion-like properties or
relations that decompose endlessly into increasingly natural properties and
relations, and, by stipulation, the objects in question instantiate no such
properties or relations.

Secondly, consider in sketch how (DP2?) applies to two Onion-like ob-
jects x and y. These objects will have no perfectly natural properties, nor
will their parts. But intuitively, if there is some degree of naturalness such
that the parts of x and y share all properties and relations of that degree
of naturalness or greater, then x and y turn out duplicates. More carefully,
the sufficient condition for duplication is that for any property or relation
R, there is some property or relation at least as natural as R such that every
property or relation as least as natural as it is shared by the parts of x and y.
On the other hand, speaking intuitively again, if no matter how high a de-
gree of naturalness we choose, the parts of x and y still differ with respect to
some properties at least that natural, then x and y do not turn out duplicates.

However, I doubt that (DP2?) gives an acceptable sufficient condition
for duplication. Suppose that x and y are not duplicates, and suppose for
simplicity that each is a mereological atom. Suppose further that the only
intrinsic differences between x and y are those entailed by the fact that x
has, while y lacks, a certain intrinsic property P. Now suppose that P is the
conjunction of two properties Q, and Q,, and that both x and y have Q,, a
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perfectly natural property. It follows that x has, while y lacks, Q,. If Q, is
not as or more natural than Q,, then what we have said is consistent with
the right hand side of (DP2) being satisfied, despite the stipulation that x and
y are not duplicates, for when we assign P to the variable ‘R’, we may assign
Q, to the variable ‘R”.

Of course, if the right hand side of (DP2) is true, then it applies to Q,.
But can we not satisfy the right hand side of (DP2) in exactly the same way
as above? Let Q, be the conjunction of two properties Q, and Q,, where
Q, is a perfectly natural property that both x and y have (it follows that x
has, while y lacks, Q,). When Q, is assigned to ‘R’, we may satisfy the right
hand side of (DP2) by assigning Q, to ‘R”. The process then will be repeated
for Q,, for one of Q,’s conjuncts, for one of those conjuncts...forever. The
following diagram pictures these endlessly conjunctive properties:

etc.

¢ boldface indicates perfectly natural properties

e lines (—) move upwards from properties to more natural
conjuncts

Figure 4.1: Endlessly conjunctive properties

So, we have a pair of non-duplicates x and y that, it seems, satisfy the right
hand side of (DP2?).

This example is coherent only if we can claim both that VQ' > Q, Q’x A
Q’y, and that y lacks Q,, Q,, Q,, etc., and we can make these claims only if
we claim that none of Q,, Q,, Q,...are equally as natural as Q, (clearly, none
can be more natural since Q, is perfectly natural). I think that we can make
such a claim. In fact, we could make it in two ways. Q,, Q,, Q,, etc. could
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be each be incomparable in respect of naturalness to Q,, or each of these
properties could be less natural than Q,. I have no argument that either case
is possible, but neither do I have an argument that both cases are impossible.
Thus, the acceptability of (DP2?) is at least cast into doubt.

Think of sequences of increasingly natural properties as paths heading
upward (the upward direction is the direction of increasing naturalness). In-
tuitively, (DP2?) says that if above every property or relation there is some
path along which x and y agree on all properties and relations, then x and y
must be duplicates. We have seen that this may be too lenient. The example
seems to show that we should make some requirement about every path.

This may be accomplished with the following set of definitions:

C is a chain =, C is a sequence® of properties such that:

a) every member of C is more natural than every previous
member of C (that is, naturalness of members of C increases
monotonically), and

b) there is no Q that is not a member of C, but is more natural
than every member of C

Notice that every chain is either infinite, or has a perfectly natural property
or relation as its final member (or both). Notice also that an upper segment
of a chain is itself a chain.

Let C be a chain, A and B be sets of objects, and f be a part-whole
isomorphism between A and B. We define the notion of A and B agreeing on
chain C under function f (for short: “agree(A,B,C, f)”):

agree(A,B,C, f) =4 for every property or relation R from C and
every sequence x of members of A, R(xX) iff R(f (%))

Another preliminary definition. Let A and B be sets of objects:

f is a duplication isomorphism between A and B = f is a part-
whole isomorphism between A and B such that every chain has
some upper segment or other C such that agree(4,B,C, f)

I mean to allow a-sequences for any ordinal @, with the exception that I do not allow
a null sequence.
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We are finally in a position to give our definition of ‘duplicate’:

(DP2) x and y are duplicates = there is a duplication isomorphism between
the set of x’s parts and the set of y’s parts

The idea behind (DP2) is similar to the idea behind (DP2?), so the moti-
vating remarks for (DP2?) apply to (DP2). However, the revised definition
avoids the problem with (DP2?). Let X be the set of x’s parts, and Y be
the set of y’s parts; the chain (Q,,Q,,Q,...) has no upper segment C such
that agree(X,Y,C, f), since x and y (in that example) differ with respect to

every property in this chain. So there cannot be a duplication isomorphism
between X and Y.

4.2.2 Other Concepts

In this section I state definitions of ‘intrinsic’, ‘internal’, ‘external’, ‘intrin-
sic profile’, and ‘qualitative’. For intrinsicality and internal and external
relations, I follow Lewis closely. Intrinsicality may be defined in terms of
duplication via (D1):

(Dx1) P is intrinsic =4 P can never differ between duplicates

Lewis defines an internal relation as one that “supervenes on the intrinsic
nature of the relata” (1986c, p. 62). This may be restated as follows:

(D3) A relation R (with two or greater places) is internal = for any se-
quence of objects x such that R(X), if f is a function such that for any
x in ¥, x is a duplicate of f(x), then R(f(X))

He then defines an external relation to be a non-internal relation R that “su-
pervenes on the intrinsic nature of the composite of the relata taken togeth-
er...” (1986¢, p. 62). We may elaborate on this as follows. An example of
an external relation might be the relation being ten feet from. The idea is
that if x is ten feet from y, then any duplicate of the fusion of x and y will
need to contain two parts, a duplicate of x and a duplicate of y, separated

by ten feet. Here is the definition:

(D4) R is external =4 1) R is a relation (with two or more places) that is not
internal and ii) for any two objects x and y, any duplication isomor-
phism f between the set of x’s parts and the set of y’s parts, and any
sequence x of parts of x, R(xX) iff R(f(X)).
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It may not be evident that (D4) captures the intuitive notion of an external
relation expressed above. However, (D4) is equivalent” to:

(D4’) Relation R is external =, i) R is a relation (with two or more places)
that is not internal, and ii) for any sequence of objects X such that R(%),
and for any object y that is a duplicate of x, the fusion of the members
of x, and for any duplication isomorphism f between the set of parts
of x and the set of parts of y, R(f (X))

(D4’) seems closer to the intuitive characterization of externality: it says that
a non-internal relation is external if, when it holds between some objects, it
holds between “corresponding” parts of any duplicate, y, of the fusion, x, of
those objects (the “corresponding” parts here are the images of the original
objects under any duplication isomorphism between the parts of x and the
parts of y). I work with (D4) rather than (D4’) because it is simpler.

Next we turn to the concept of an intrinsic profile, a maximally specific
intrinsic property. This concept may be analyzed as follows:

(Ds) P is an intrinsic profile = P is an intrinsic property such that for every
intrinsic property Q, either P entails Q or P entails ~Q

Finally, we give a definition of ‘qualitative’. Qualitative properties and rela-
tions are “non-haecceitistic” properties. Intrinsic properties should turn out
to be qualitative, but so should non-intrinsic properties such as being ten feet
from something red. Roughly, a relation is qualitative iff one can determine
whether or not it holds between some objects whenever one knows all the
intrinsic facts about the possible world containing those objects.

Lewis says that (1986c¢, p. 63):

"Proof: We need a lemma, which follows immediately from the relevant definitions:

Lemma if f is a duplication isomorphism between A and B, CCA, and g = f restricted to
C, then g is a duplication isomorphism between C and f[C].

That (D4) entails (D4’) is evident. For the other direction, suppose R is non-internal, that
f is a duplication isomorphism between the set of x’s parts, X, and the set of y’s parts, Y,
that X is a sequence of parts of x, and that R(X). Let x’ be the fusion of the members of
X, let X’ be the set of parts of x’, let 3’ = f(x’), let Y’ be the set of parts of y’, let g be f
restricted to X’. By mereology, X’ C X, so by the Lemma, g is a duplication isomorphism
between X’ and f[X’]. Since f is a part- whole isomorphism, f[X’] =Y, so by (DP2), x’
and y’ are duplicates. Hence, by (D4’) R(g(x)). But g(x) = f(X), so R(f(X)). Without loss
of generality, (D4) follows.
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Extrinsic qualitative character, wherein duplicates may differ, consists
of extrinsic properties that are, though not perfectly natural, still some-
what natural in virtue of their definability from perfectly natural prop-
erties and relations.

I would alter this definition in two ways. First, let us move from “definabil-
ity” to (global) supervenience, if for no other reason than to make it explicit
that the kind of definability in question is infinitary.® Thus, as a first approx-
imation, the qualitative properties and relations are those that supervene
(globally) on the set of perfectly natural properties and relations. Unfor-
tunately, this leaves out some qualitative properties and relations because
of the complications introduced by Onion. Fortunately, we can avoid this
problem by defining the qualitative properties to be those properties that su-
pervene on the set of intrinsic properties and external relations. We thereby
make use of the machinery in (DP2) to get around the Onion problem, since
the definitions of ‘intrinsic’ and ‘external’ make use of duplication. Thus, I
accept:

(D6) Property or relation R is qualitative =4 R supervenes on the set of
intrinsic properties and external relations

4.2.3 Consequences of the definitions

The consequences of our definitions are an important test of their adequacy.
These consequences show that the definitions preserve the features we expect
the definiens to have, prior to analysis.

First, I note that principle (o) from section 3.1:

8 Although Lewis is not explicit on this point, it is clear that by ‘definability’ Lewis means
to allow infinitary definition. First, he uses the word ‘indiscernible’ in Lewis (1986¢, p. 63)
for things that have exactly the same qualitative properties: surely one wouldn’t call two
things “indiscernible” if they differed with respect to some property that is capable of be-
ing defined from the perfectly natural properties and relations, even if the definition must
be infinite. Secondly, in Lewis (1986¢, pp. 62—63), Lewis says that two objects have the
same ‘intrinsic qualitative character’ iff they are duplicates. That is, the intrinsic qualita-
tive properties are exactly the intrinsic properties. However, intrinsic properties needn’t be
finitely definable from the perfectly natural properties and relations: all that is required of
intrinsic properties is that they never differ between duplicates. Infinite Boolean combina-
tions of intrinsic properties, for example, are intrinsic (see (A3) of this chapter). So, intrinsic
qualitative properties needn’t be finitely definable from the perfectly natural properties and
relations; hence, it would be odd if Lewis intended such a restriction on the extrinsic quali-
tative properties.
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(o) Every perfectly natural property is intrinsic

is a consequence of our definitions.” Suppose property P is perfectly natural,
and let x and y be any two duplicates. By (DP2), there is a duplication
isomorphism, f, between the set X of x’s parts and the set Y of y’s parts. So
every chain has an upper segment C such that X and Y agree on C under /.
But (P) is a chain, and has just one upper segment: itself. So X and Y agree
on C under f. But since every object is a part of itself, x € X and y € Y;
since f is a part-whole isomorphism, f(x) =y. Hence, x has P iff y has P.
Since P cannot differ between duplicates, then, it is intrinsic by (D).
A similar result holds for perfectly natural relations:

(Cx) every perfectly natural relation is either external or internal

Let R be any perfectly natural relation. We will prove that R satisfies clause ii)
of (D4)—thus, R is either internal or external. Suppose that f is a duplication
isomorphism between X, the set of parts of x, and Y, the set of parts of y,
and that X is a sequence of parts of x such that R(x). As in the proof of (o),
(R) is a chain with only one upper segment, so X and Y agree on (R) under
/. Therefore, R(f(x)). Our conclusion follows without loss of generality.

Next, I show that (A1), (A2), and (A3), the conditions from section 4.1
under which ‘duplicate’ and ‘intrinsic’ are interdefinable via (D1) and (D2),
follow from our definitions.

First, we prove (A1): duplication is an equivalence relation. Reflexiv-
ity and symmetry are immediate; transitivity remains. Suppose x and y are
duplicates as are y and z. By (DP2), there is a duplication isomorphism f
between the set X of x’s parts and the set Y of y’s parts, and a duplication
isomorphism g between Y and the set Z of z’s parts. Now, f o g is clearly a
part-whole isomorphism between X and Z. We will show that every chain
has some upper segment C such that agree(X,Z,C, f o g); it then follows by
(DP2) that x and z are duplicates. Let C’ be an arbitrary chain. In virtue of
/s existence, C has an upper segment C” such that agree(X,Y,C”, f); sim-
ilarly, C has an upper segment C” such that agree(Y,Z,C",g). If C" =C"”
then let C = C” = C"; if C” # C" then one is an upper segment of the
other; in this case let C be the smaller of C” and C”. Either way, C is an up-
per segment of C’. Since agree(X,Y,C”, f) and agree(Y,Z,C", g), we have
agree(X,Z,C,f og). Q.E.D..

% Another consequence is a more general version of (o): every chain has an upper segment
in which all properties are intrinsic.
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Next, (A2): anything necessarily coextensive with an intrinsic property
is intrinsic. If P is intrinsic, then it can never differ between duplicates, by
(D1). But then any property necessarily coextensive with P can never differ
between duplicates, and hence is intrinsic by (D1). Notice that I do not
rely on my chapter 2 assumption that necessarily coextensive properties are
identical.

Lastly, (A3): I, the set of intrinsic properties, is closed under negation
and infinitary conjunction. Let P € I. Since P can never differ between
duplicates, neither can ~P; hence ~P € I. Now let the members of A be
in 7, and let Q be the conjunction of the members of A. Q can never differ
between duplicates, and hence Q € I. For suppose otherwise: let Qx, ~Qy,
where x and y are duplicates. Since Q is the conjunction of the members of
A, x has every member of A, whereas y does not have every member of A.
Thus, some intrinsic property—a member of A—differs between duplicates.
Contradiction.

Since (A1) is a consequence of the definitions, so is (D2), the principle
that objects that share intrinsic properties are duplicates. For we showed in
section 4.1 that (D1) and (A1) together entail (D2).

Next we prove two principles for intrinsic profiles. First:

(C2) P is an intrinsic profile iff the set of P’s instances is a maximal set of
possible duplicates

where by a “maximal set of possible duplicates” I mean a set § such that
i) every member of § is a duplicate of every other member of S, and ii) S is
closed under the relation duplicate of (remember the possibilist quantifiers!).

First suppose that the set § of P’s instances is a maximal set of possible
duplicates. P can therefore never differ between duplicates since if x and y
are duplicates then either both or neither are in S. Moreover, let P’ be any
intrinsic property, and let S’ be the set of P”’s possible instances. Either §
overlaps §’ or it does not. If the latter, then P entails ~P’. If the former, then
§ € & and hence P entails P’. For suppose otherwise: let x € S,x € §',y €
S,y ¢ §’. Since x,y € §, x and y are duplicates. But since x € §’ but y ¢ §,
P’ differs between duplicates. But P’ is intrinsic. Contradiction. Thus, P is
intrinsic and for every intrinsic property P’, P entails either P’ or ~P’. P,
therefore, is an intrinsic profile.

For the other direction, suppose that P is an intrinsic profile and let §
be the set of P’s (possible) instances. Let x,y € § and let P’ be any intrinsic
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property had by either x or y. Since x and y each has P, an intrinsic profile,
the other must have P’ as well. So, x and y have the same intrinsic properties,
and hence are duplicates by (D2). Next, note that if x € S, any duplicate of
x must be in S—otherwise P, an intrinsic property, would differ between
duplicates. Thus, $ is a maximal set of duplicates.

Next, we prove (C3):

(C3) For any object x, the conjunction of x’s intrinsic properties is an intrin-
sic profile

Let P be the conjunction of A, the set of x’s intrinsic properties. By (A3), P
is intrinsic. Let Q be any intrinsic property—we show that either P entails
Q or P entails ~Q); it follows that P is an intrinsic profile. Either x has Q or
x has ~Q. If the former then Q € A and hence P entails Q. If the latter, then
since ~Q is intrinsic (by (A3)), ~Q € A, so P entails ~Q.

Finally, we note that the following principles are consequences of the
definition of ‘qualitative’:

(C4) every intrinsic property is qualitative

(Cs) every internal or external relation is qualitative

It is trivial that all intrinsic properties and external relations are qualitative,
since principles (S1) and (S4) from chapter 3 together entail that a property
or relation supervenes on any set containing it. Internal relations remain.
Let I = the set of intrinsic properties; let £ = the set of external relations,
and let R be an internal relation; we show that R supervenes on JUE. Let f
be an /U E-isomorphism between D(w) and D(w’), the domains of possible
worlds w and @’. Suppose R(x), where x is a sequence of members of D(w).
Since f is an I U E-isomorphism it is an /-isomorphism, so for any x in X, x
shares all intrinsic properties with f(x). Thus, by (D2), for any x in ¥, x is a
duplicate of f(x). Since R is internal, it follows that R(f(x)).

We have shown that our definitions entail many principles that seem in-
tuitively true of our notions. This is evidence that the definitions are correct.



Chapter 5

Naturalness and Arbitrariness

I claim that we should admit the notion of naturalness. Naturalness comes
in degrees, but in this chapter I consider only perfect naturalness, which I
call simply “naturalness”.

David Lewis tentatively proposes taking naturalness as a primitive (1986c,
pp. 63—4; 1983b, p. 347). I have discussed and accepted this proposal in
chapter 3. But Lewis proposes the conjunction of this claim with his “class
nominalism”, according to which relations are classes of ordered pairs of
possibilia. I will argue that this combination of views is defective.

After introducing Lewis’s proposal in section 5.1, I argue in section 5.2
that we should reject it because of issues involving the nature of ordered
pairs (and ordered classes in general). Then, in section 5.3, I briefly examine
a puzzle due to Kripke and Wittgenstein. I argue that a proposed solution of
the puzzle using the natural/nonnatural distinction fails, at least if numbers
are viewed, as they often are, as arbitrarily constructible entities.

5.1 Primitive Class Naturalism

Class nominalism is a reductive theory of the abundant properties and re-
lations. The basic entities countenanced by the class nominalist are classes
and concrete particulars (“objects”). Properties and relations are then con-
structed out of these entities. The properties are identified with the classes
of objects. The n-place relations are identified with the classes of ordered
n-tuples of objects, where these n-tuples are constructed from classes ac-
cording to any one of the various common devices. An n-tuple instantiates

77
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an n-place relation R iff it is a member of R. An object instantiates a prop-
erty P iff it is a member of P. For example, the property redness is simply
the class of all red things; the relation being ten feet from is the class of all
ordered pairs (x,y) where x is an object that is ten feet from y, another ob-
ject. For a class nominalist, then, properties and relations are not primitive
entities—they are constructed from primitive entities using the methods of
the set theorists.

Class nominalism is most plausible it is coupled with possibilism: the ac-
ceptance of non-actual possible objects. Otherwise, properties are identified
with the classes of their actual instances; thus, distinct properties that just
happen to be coextensive—for example, the properties of being George Bush
and being the President of the United States in 1992—turn out identical. I
will, therefore, address my remarks to this version of class nominalism.

If every class of possibilia counts as a property, then the natural prop-
erties are an exceedingly small minority of the properties. Every possible
object has infinitely many properties, since there are (presumably) infinitely
many possible objects and hence infinitely many sets of possible objects con-
taining a given possible object. In contrast, on the conception of naturalness
that I accept (“Conception 1” from chapter 3), macroscopic actual objects,
for example, do not have any (perfectly) natural properties—only their sub-
atomic parts do. And it is plausible that even these have only a few natural
properties: charge, spin, mass, etc.

We have a question: how do we account for naturalness in ontology? I
have discussed some of these options in chapter 1; the one I want to focus on
now is the option of primitive naturalism. The primitive naturalist takes the
distinction between naturalness and unnaturalness as a primitive distinction
that is incapable of reductive analysis. What is more, the distinction is in
no way a matter of convention—it is an objective fact about the world that
some properties and relations are natural, while others are not.

Lewis holds class nominalism and entertains primitive naturalism.! I call
the conjunction of these two views “primitive class naturalism”, or “PCN”
for short. Thus, PCN is the view that i) reduces properties and relations
to classes of objects and ‘tuples of objects, and ii) takes the natural/non-
natural distinction as an objective primitive distinction among properties
and relations. I will argue in the next section that PCN is an unacceptable

1See Lewis (1986¢, section 1.5). Anthony Quinton defends a related view in Quinton
(1958).
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combination of views.

5.2 Against Primitive Class Naturalism

5.2.1 Pairs and Relations

According to PCN, a binary relation is a class of ordered pairs. For exam-
ple, the relation being ten feet from is the class of all ordered pairs (x,y) of
possible objects where x is ten feet from y. But what are ordered pairs?

Ordinary classes are unordered. When we write the name of a class thus:
“{x,y}”, the order in which we write the members is insignificant, for the
class {x,y} is identical to the class {y,x}. Classes are individuated solely
by their membership. For this reason, we do not identify, for example, the
relation taller than with the class of all classes {x,y} where x is taller than
y. Presumably, we would go on to claim that the relation shorter than is the
class of all classes {x,y} where x is shorter than y. But since for any x and
v, {x,v} = {y,x}, these two classes would be identical, and hence we would
have identified two distinct relations: taller than and shorter than.

In contrast, ordered pairs are ordered. When we write the name of an
ordered pair thus: “(x,y)”, the order is significant, for (x,y) is not identical
to (y,x). Ordered pairs are individuated by their membership and the relative
order of those members. That is, ordered pairs obey the following identity
condition:

(x,y) = (z,w) if and only if x =z and y = w.

But the notion of an ordered pair is zot an undefined notion of typical class
theories. Ordered pairs are constructed from classes by any one of a number
of methods, each of which preserves the identity condition just mentioned.
To reap the benefits of having ordered pairs in our ontology, all we need is
the concepts of standard class theory and a little ingenuity.

One method for constructing ordered pairs (“method” for short) was
introduced by Wiener. For any x and y, Wiener identifies (x,y) with the class:
{x,{y,a}}. Given the class {x,{y,@}}, we can “recover” the information of
which is the first member of the pair and which is the second. We know, for
example, that the second member is y since y is the element paired with the
null-class. The more common method is due to Kuratowski, who identifies
(x,y) with {x,{x,y}}. But there are countless others—any method that yields
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one ordered pair for any two objects and obeys the stated identity condition
will do.

These methods should not be viewed as conflicting theories of the nature
of “the ordered pairs” conceived as a sort of entity with which we have prior
acquaintance. Rather, they are proposals for using certain classes to do the
work we require of “ordered pairs”.

Or rather, most of the work. Some of the work asked of the ordered
pairs cannot be done by their stand-ins. Constructions fail at certain tasks
because they are constructions. Since each method generates the appropriate
ordered pairs equally well, no one method generates classes that deserve the
title of “the ordered pairs” any more than any other method. True, some
methods are more common in mathematical and philosophical writing while
others are not even used at all, but these differences among methods have no
ontological significance, in a sense to be discussed below. I will argue that
this fact means trouble for PCN.

5.2.2 Benacceraf’s Argument

First, however, let us rehearse informally a famous argument due to Paul
Benacerraf (1965). The multiplicity of methods has an analog in number
theory: the familiar reduction of numbers to classes can be carried out in
many ways. We might let zero be the null class, and let 7+ 1 be the unit class
of the class identified with 7. This is the strategy of Zermelo. Or, we might
let the null class again be zero, but let 7+ 1 be the union of » and {»}, as did
von Neumann. Or, we could employ any one of countless other strategies.?

Each such strategy provides adequate surrogates for the numbers. Each
can mathematically do the job, in the sense that the resulting “numbers”
provably have class-theoretic properties that are exactly isomorphic to all
the number-theoretic properties that numbers are supposed to have. The
strategies may differ one from another in terms of convenience, but they
seem to be “ontologically on a par”. No strategy generates “the real and
true” numbers.

What this means, argues Benacceraf, is that we cannot think of the num-
bers as a single determinate class of objects, fixed once and for all. Which
classes are “the numbers”? Is the number 2, for example, {{@}}, as Zermelo

2See Quine (1963, pp. 81—5). See Benacerraf (1965) for an account of the desiderata a
method for constructing the natural numbers must satisfy.
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would have us believe, or is it {&, {@&}} as it is for von Neumann? It cannot
be both, for {{@}} # {@, {@}}. But surely it cannot just be one of them, since
it would be arbitrary to grant one strategy the privileged status of generating
the true numbers. So neither can be the number 2. In Benacceraf’s words,
this means we should not view the numbers “as objects”.

That is, if we wish numbers to be reduced to other entities. As Linda
Wetzel and Michael Resnik have pointed out, if we believe in numbers as
objects in their own right, in no need of reduction, then we escape Benac-
ceraf’s argument (Wetzel (1989, part one); Resnik (1980, p. 231)). But many
shy away from such a bold response.

This multiplicity of constructions of the natural numbers, argues Benac-
ceraf, does not matter for most contexts in which we use concepts of number.
But how can this be, if numbers are “not objects”?

An attractive answer is given by the “structuralist”. Take the natural
numbers, for example, and ask yourself what is distinctive about them. The
structuralist answer is: structure alone. What is distinctive about the natural
numbers is that there is an initial element (o), and a relation called the “suc-
cessor relation” such that each number has a unique successor, the initial
element is the successor of no element, etc. But exactly what the elements
are does not matter, so long as there is enough of them, and there is a rela-
tion among them to play the role of the successor relation. A line of people
that continued forever, with one person first in line, could be the numbers.
Any “w-sequence”—any one- one function from w, the class of finite von
Neumman ordinals, onto any domain has the appropriate structure. The
number to which @& is mapped plays the role of o; the number to which {&}
is mapped plays the role of 1, etc. The image of the ordinal successor relation
plays the role of number- theoretic successor; the image of C plays the role
of =, etc.

Any w-sequence, then, is an adequate surrogate for the sequence of nat-
ural numbers. A number-theoretic sentence ¢, for the structuralist, will be
interpreted as a universally quantified claim:

for any w-sequence f, ¢(f)

where ¢(f) is the result of replacing the number-theoretic predicates, con-
stants, and functors in ¢ with appropriate constructions in terms of /. The
quantifiers in ¢ that supposedly range over numbers are in ¢(f) allowed to
range over the range of f. Since each method faithfully preserves number-
theoretic properties, if ¢ is an “ordinary” number-theoretic sentence then
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the truth-value of "V ¢(f)" will always match the truth value we would
have intuitively assigned to ¢. And this, despite the fact that we quantify
over no numbers.

By an “ordinary” number theoretic sentence, I mean roughly a sentence
that concerns only the structural properties of numbers. For non-ordinary
sentences, structuralism gives somewhat odd results. Consider:

(1) Ted Sider is distinct from the number 2

Structuralism interprets (1) as the claim that for any w-sequence, the third
member of the sequence is not identical to me (the first member is identified
with zero, remember). But this claim is not true, since I am the third member
of many w-sequences (consider: @&, {@}, Ted, {{@}}, {{{@}}},... ). So struc-
turalism implies that (1) is false, and this is certainly not an intuitive result.
(Of course, structuralism does not imply that (1’) is true:

(1) Ted Sider is identical to the number 2

since there are many c-sequences whose third member is 7ot me.)?

Is (1) in fact true? Common sense would presumably answer “yes”. But
the structuralist answer is that to think that (1) is true is to think of num-
bers as being (particular) objects. Since there is no one object that uniquely
deserves the name ‘one’, this would be a mistake.

5.2.3 An Argument against Primitive Class Naturalism

Suppose for the moment that, contrary to Benacceraf, “numbers are ob-
jects”. Without worrying overmuch about just what this comes to, we may
simply take it to imply that either (1) or (1’) is true. If this were the case,
then structuralism would be false. The question I want to pursue is whether

3As an alternative to the “Ramsification” approach in the text, a structuralist could view
number theoretical sentences as being partially interpreted. On this view, there is no one
intended interpretation of the language of number theory; rather there are a number of
acceptable interpretations (one for each w-sequence). A sentence is true if true on all ac-
ceptable interpretations, false if false on all acceptable interpretations. The number theoretic
terms are equivocal over their interpretations on the various w-sequences. Presumably, if a
sentence is true on some of the interpretations but false on others, it lacks truth value. My
point would still hold: (1) would not be true.
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PCN runs into a difficulty of this kind. Put intuitively, the question is: does
primitive class naturalism require that relations “be objects”? I think it does.

In this section, I will give my argument against primitive class naturalism.
The problem with PCN is, in a nutshell, that it applies one of its primitive
concepts (naturalness) to entities (ordered pairs) that are neither primitive
entities PCN accepts, nor are they uniquely constructible in terms of such
entities. The argument is related to arguments given by D. M. Armstrong
and Peter Forrest.*

Let us continue for the moment at an intuitive level. The question of
which relations are natural is not a “structural” question about the set of
all relations. Rather, given a particular natural relation, it would seem that
PCN requires there to be a fact about that relation, namely, that it is natu-
ral. Indeed, the question of whether a given relation is natural is a bit like
the question of whether I am identical to the number 2—to answer either
question we must be able to single out a particular entity and ask a question
about it. By countenancing primitive naturalness, the class nominalist runs
into the same difficulty that would beset the structuralist if numbers were
“objects”.

Let’s look at this in more depth. PCN employs a primitive distinction
between natural and non-natural relations. But relations are identified with
classes of ordered pairs of possibilia. These classes of pairs are in turn iden-
tified with classes of classes of possibilia since pairs are constructed from
classes. So, PCN invokes a primitive concept of naturalness, which applies
to classes of classes of possibilia. What is more, this concept is taken to be
an objective feature of the world.

Suppose I ask whether a given relation is natural. I have the concept of
naturalness as applied to classes of possibilia, on one hand, and a question—
Is being ten feet from natural>—on the other. How do I get my answer to that
question from facts about naturalness? Remember that the relation being
ten feet from will be identified with different classes, depending on which
method for constructing the ordered pairs we use. Do I look at the class
of Kuratowski pairs (x,y) where x is ten feet from y, and see whether the
concept of naturalness applies to it? Do I look at Wiener pairs? Some other
kind of pairs?

In outline, my argument against PCN runs as follows. I consider three

4See Armstrong (1986, pp. 86—7); Armstrong (1989b, pp. 29—32); Forrest (1986, pp.
9o-1). Kitcher (1978) discusses related issues involving ordered pairs.
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possibilities for formulating PCN and attempt to show that each is flawed.
As near as I can tell, I consider all plausible formulations. The conclusion
is that there is no acceptable formulation of PCN. The possible formula-
tions are distinguished by the way they answer the question—Is relation R
natural?>—based on the way the concept of naturalness applies to classes of
classes of possibilia.

Throughout this section I assume that ordered pairs are indeed arbitrarily
constructible, and not in the primitive ontology of PCN. In the next section
I will consider the result of giving up this assumption.

Possibility 1: One method

One possibility would be that there is one method of constructing ordered
pairs such that the natural relations as constructed according to that method
are all and only the classes with the property of naturalness. Let us suppose
that method is Kuratowski’s. So, the natural relations are sets of Kuratowski
pairs.

Suppose we want to know whether the relation being ten feet from is
a natural relation. The present proposal instructs us to consider the class
of all pairs (x,y) where x and y are possible objects separated by ten feet,
constructed according to Kuratowski’s method. If and only if this class has
the property of naturalness, our answer is yes. And it is crucial that we
used Kuratowski’s method—if we had used another method, say Wiener’s,
in constructing the class of pairs (x,y) where x is ten feet from y, we might
have gotten the wrong answer! The class obtained in each case is different—
perhaps exactly one has the property of naturalness.

I reject this answer since, [ will argue, it contradicts the claim of primitive
naturalism that naturalness is objective, and not a matter of convention.

Given a certain convention, I need a test for what is a matter of that
convention. As an example, let us look at the convention of naming. My
place of birth is not a matter of the convention of naming, for the proposition
that Ted was born in New Haven has the same truth value as it would have
had if our convention of naming were different, and ‘Jeff” were my name.
Contrast this with the proposition that Ted’s name has 3 letters, which has
a different truth value than it would have had if my name were ‘Jeff’ instead
of “Ted’. The moral: the number of letters in my name is a matter of the
naming convention.

I take it as a premise that the choice of a method for constructing ordered
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pairs is conventional, just as the choice of what to name a person is conven-
tional. This is quite plausible. Surely, the various methods for constructing
ordered pairs are mathematical tricks for using classes to explicate concepts
involving order. Surely, there is no ontological seriousness in our choice of
whether to use this method or that method in constructing pairs.

Since the choice of a method for making pairs is conventional, proposi-
tions that change their truth value when we change our methods for mak-
ing ordered pairs are about matters of convention—specifically, they are
about matters of the pair-making convention. One proposition that does
not change its truth value in this way is the proposition that the earlier- than
relation is asymmetric. Suppose, for example, that this proposition is true,
when we make pairs according to Kuratowski’s method. This means that (i)
the set of sets {x,{x,y}} such that x is earlier than y is such that for any x
and y, if {x,{x,y}} belongs to it, then {y, {y,x}} does not belong to it. Now,
let us make pairs Wiener’s way instead. We must show that (ii) the set of sets
{x,{y,@}} where x is earlier than y is such that for any x, y, if {x,{y,a}}
is in the set then {y,{x,@}} is not. Clearly, ii) follows from i). (From (i) it
follows that for any x, y, if x is earlier than y then y isn’t earlier than x, and
(i1) follows from this.)

Since the truth value of the proposition that the earlier-than relation is
asymmetric does not vary when we change methods, this shows that the
asymmetry of the earlier-than relation is not conventional (at least with re-
spect to the convention of making ordered pairs). It should be intuitively
clear that most propositions about relations will not vary in truth value when
we switch methods of making pairs, since when we talk about relations we
don’t say things that depend on the quirks of a particular method. Typically,
when we make assertions about ordered pairs, all we assume about the na-
ture of pairs is that they obey the identity condition listed above (pairs are
individuated by their members and their order). Of course, a proposition like
the proposition that the transitive closure® of the earlier-than relation con-
tains @ will vary in truth value when we switch methods (it will be true when
we use Wiener’s method; false when we use Kuratowski’s method). This just
goes to show that whether or not the transitive closure of the earlier-than
relation contains @ is a matter of convention.®

3x is in the transitive closure of a set y iff x bears the ancestral of the membership relation

to y—intuitively, if x is a member of y, or a member of a member of y, or a member of a
member of a member of y, or ...
I am, of course, assuming the truth of Class Nominalism for the moment: that relations
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Back to naturalness. Clearly, the proposition that the earlier-than relation
is natural will vary in truth value when we switch methods. Only sets of
Kuratowski pairs have the property of naturalness. So, naturalness turns
out to be a matter of convention, on the interpretation of PCN that I have
called “Possibility 1”. Thus, this version of PCN is contradictory, since it is
built into the statement of PCN (via the statement of Primitive Naturalism)
that naturalness is “objective”, and not a matter of convention.

Possibility 2: All methods

Here is an alternative proposal. Instead of there being one distinguished
method, surely every method is on a par. One way to develop this thought
is as follows. In possibility one, the property of naturalness was had by
all and only the classes that counted as natural relations according to one
method. According to possibility 2, a class of classes counts as natural just
when it corresponds to a natural relation under some method or other for
constructing ordered pairs.

Suppose L ask: is being ten feet from natural? On this approach, to answer
this question I must first choose a method for making ordered pairs. Think
of this as an arbitrary choice of a language to discuss ordered pairs—I may
choose any method I like. Suppose I choose some method M. I must now
construct the class of pairs (x,y), where x is ten feet from y, according to
method M. Now, the answer to my original question is yes iff this class
has the property of naturalness. And since our naturalness property now
applies to any class of classes that corresponds to a natural relation under
any method, the answer to the question will be the same whatever method I
choose.

The problem here is that too many relations will turn out natural, because
a class of pairs that corresponds to a certain relation under one method of
constructing ordered pairs may correspond to an entirely different relation
under another method.

Suppose the relation being ten feet from is a natural relation. The present
proposal says that for any method M, the class of M-pairs (x,y) where x is ten
feet from y must have the property of naturalness. So, using the Kuratowski
method, the following class S has the property of naturalness:

are sets of ordered pairs. If they are not, then obviously (6) won’t vary in its truth value
when we switch methods of constructing pairs.
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S ={{x,{x,y}}:x and y are possibilia that are ten feet apart}.

Now let # and v be two objects that are ten feet apart, and let #’ and v’ be
two other objects that are not ten feet apart. We define a new method X for
constructing the ordered pairs. Intuitively, method X is just like Kuratowski’s

method, save that the pairs (#,v) and (#’,7’) are swapped. Method X may
be defined as follows:

{u,{n,v}}if x=u" and y =’
(x,y) ={u' {u',v'}} if x=uand y =0
{x,{x,y}} otherwise

Now consider the following relation R. R is just like being ten feet from, save
that #» and v do not stand in R, and #’ and v’ do stand in R. Plainly, R is
not a natural relation. But the present proposal has the consequence that R
is natural. The present proposal says that to ask whether a given relation
is natural one must first choose a method for constructing pairs. Let us
choose method X. That proposal says next that the relation is natural iff the
class of ordered pairs of possibilia that stand in that relation, as constructed
according to that method, has the property of naturalness. Well, the class of
ordered pairs of possibilia that stand in R, as constructed according to X,
is exactly S! The tricky clauses in the definitions of relation R and method
X “cancel” each other, and we get exactly the same class identified with
being ten feet from by the Kuratowski method. But § has the property of
naturalness, and so R turns out to be natural. The present theory must be
disposed of.”

’Phillip Bricker suggested a hybrid of Possibilities T and 2 that is worth discussing. Nat-
uralness, on this view, is a property had by a set of sets just when it counts as a natural
relation under some natural method for constructing ordered pairs. To ask whether a rela-
tion is natural, on this view, one must first choose a natural method M for making pairs, and
then consider whether the set of M-pairs that stand in the given relation has the property
of naturalness. This view escapes the difficulty I posed for Possibility 2 since method X is,
allegedly, an unnatural method for constructing the pairs.

I think that this view runs into problems with conventionality, just like Possibility 1. This
view instructs us to choose only natural methods to make pairs. But if we choose only
natural methods, I think this is itself merely a matter of convention. So, if the truth value of

(*) being 10 feet from is a natural relation

switches when we move from Kuratowski’s method to method X, then, I say, naturalness is a
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Possibility 3: Naturalness is a relation between classes and methods

In light of the difficulty with possibility 2, perhaps we should keep track
of which method we are using when we evaluate the naturalness of a class.
Class § from the last section should count as a natural relation, considered
as a class of Kuratowski pairs, but considered as a class of X-pairs (recall
my method X), it shouldn’t be natural.

As stated, this proposal is unacceptable. To say that a class is natural
“considered as” a class of Kuratowski pairs, but non-natural considered an-
other way surely cannot be taken seriously. Naturalness is supposed to be an
objective feature of the world, so if a class has the property of naturalness,
then it has that property regardless of how it is considered.

Of course, there is a serious proposal in the neighborhood. Perhaps the
property of naturalness isn’t a property at all, but rather a relation. When
we say a class is natural considered as a class of Kuratowski pairs, what
we mean is that the class bears the naturalness relation to the Kuratowski
method. Class § will count as natural with respect to method X, but not
with respect to the Kuratowski method. That is, § will bear naturalness to
method X, but not to the Kuratowski method.

On this view, what is taken as a primitive by PCN is a relation, the natu-
ralness relation, which holds between a class and a method iff the class counts
as a natural binary relation when interpreted as a class of pairs constructed
according to that method. Let us return to our question: is the relation being
ten feet from natural? On the present theory, we must first choose a method
M for constructing ordered pairs. Given this choice, we form the class of all
M-pairs (x,y), where x is ten feet from y. On the present theory, the answer
to our original question is yes if and only if this class bears the naturalness
relation to our chosen method M.

To evaluate this proposal, we should draw a distinction we have over-
looked so far. Earlier I said that PCN reduces properties and relations to
classes —properties are classes of possibilia, relations are classes of ‘tuples

matter of convention, The following argument shows that (*) does indeed switch truth value
in this way. I assume that relation R from the text is unnatural, that the relation being 10
feet from is natural, and that Kuratowski’s method is a natural method. Since Kuratowski’s
method is a natural method and being 1o feet from is natural, set S from the text is natural.
Let S’ be the set of Kuratowski pairs (x,y) that stand in R. Since R is unnatural, §’ does
not have the property of naturalness. Therefore, the hybrid theory has the consequence that
(*)’s truth value switches when we move from Kuratowski’s method to method X. For §' is
also the set of X-pairs (x,y) where x is ten feet from y.
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of possibilia. This is not quite right. Most relations are analyzed in this way,
but not all. The relation € of class membership, for example, is not analyzed
as a class of anything, for this would be circular. In building an ontological
theory, the champion of PCN appeals to a very few primitive properties and
relations, (e.g. class membership) and to a group of entities (e.g. possibilia,
classes). Most relations are thereby analyzed, but not all. Class membership
never gets analyzed. A traditional terminology calls the primitive entities
“ontology”, and the primitive concepts “ideology” (Quine, 1951). Most re-
lations, such as the relation being taller than, find a place in ontology, but €
is a part of ideology.®

When presenting Possibilities 1 and 2, [ assumed that naturalness was a
property, but I never said whether the property was a part of ontology or ide-

8 Actually, one class nominalist, David Lewis, does not definitely accept € in his ideology;
in section 2.7 and the appendix of Lewis (1991) he considers the prospects of eliminating €
in favor of the part-whole relation. I ignore this complication and take class nominalists to
be accepting € as a primitive notion.

This view that Lewis considers in parts of Lewis (1991), structuralism in set theory (SST),
faces our Benacceraf-style difficulties in new ways. A “singleton function” assigns to any
object its singleton (if it has one). According to (SST), mereology does double work; sin-
gleton functions are constructed mereologically, and also mereology gives us the rest of the
set-theoretic hierarchy, since on Lewis’s view a set is the mereological sum of its singletons.
For our purposes, the crucial feature of this view is the claim that we do not grasp any one
singleton function. Set theory is not the theory of #he singleton function, “but rather the
general theory of all singleton functions” (Lewis, 1993, p. 15). Any set-theoretic claim ¢ is
tacitly a universally quantified claim:

for any singleton function /', ¢(f)

where ¢(f) is ¢ with its references to the membership relation replaced with appropriate
constructions involving the variable f.

Now we can see the problem. There are many functions that assign singleton sets to
entities. Sets are not renounced. But there is no one unique singleton of David Lewis. Some
singleton functions assign one set to be his singleton, other functions allow other sets that
privilege. A property, according to Lewis, is a set of possible individuals. And the natural
properties will be a select few of these sets. But according to which singleton function?
A certain set S that is a natural set (say, the set of red things) according to one singleton
function may be, according to another singleton function, an entirely different and perhaps
nonnatural set (the set of items purchased by me, say). Clearly, our problem has arisen
again, and now it applies to natural properties as well as natural relations. The problem
arises in another way as well: singleton functions are construed mereologically by Lewis,
and these functions can be constructed in various equally adequate ways. See Lewis (1991,
Appendix).
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ology. That is, I never said whether PCN identified the property with a class.
This is because the objections there did not depend on this distinction. But
there is a special objection waiting if the naturalness relation of Possibility 3
is a part of ontology.

If naturalness is a class of ordered pairs then we have our trilemma all
over again. Which method for constructing the pairs shall we use? To use
only one would make naturalness a matter of convention. Instead, we could
use every method: the class corresponding to the naturalness relation con-
tains a subset for each method of constructing ordered pairs. No good, for
this would generate spurious naturalness relations as we saw above. As a last
resort we might appeal to a relation R between classes and methods: class §
bears R to method M iff § is the naturalness relation, when interpreted as a
class of ordered pairs according to M. This, of course, is the beginning of a
vicious regress: what method is used for constructing R’s ordered pairs? The
naturalness relation, then, cannot be taken as a class of ordered pairs.

So instead let us take Possibility 3 to place the naturalness relation in ide-
ology. Naturalness is a relation, but is no class of ordered pairs. This would
escape the previous objection. But in its place I have another objection. The
problem comes when we inquire into the nature of one of the relata of the
proposed naturalness relation.

Naturalness is supposed to be a relation between classes and methods.
I ask what a “method” for constructing ordered pairs is. I suppose many
answers could be given. The Kuratowski method, for example, might be
identified with a two-place function f, where f(x,y) = {x,{x,y}}. But the
Kuratowski method could just as well be taken to be a different function
g : g(x,y) = the characteristic function of f(x,y). And in either case, the
functions will surely be construed as classes of ordered pairs. Since the or-
dered pairs are capable of multiple constructions, the functions will be as
well. Or mightn’t the Kuratowski method be taken to be the sentence ‘let
(x,7) be {x,{x,y}}’? Something else corresponding to the “directions” given
by that sentence?

Let’s face it. There is no one group of entities in the ontology of PCN
that uniquely deserves the name ‘the method of Kuratowski’. Rather, there
are a number of constructions, each capturing the relevant properties of Ku-
ratowski’s method. But these constructions reintroduce the old difficulty.
Our naturalness relation is supposed to apply to methods—the Kuratowski
method, for example. But the Kuratowski method can be constructed ac-
cording to many “meta-methods”, so we have our trilemma all over again.
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Can we use just one meta-method to construct the method of Kuratowski?
No—surely the choice of a meta-method is conventional, and would there-
fore lead to conventional naturalness. Can we use all methods to construct
the method of Kuratowski, thus allowing the naturalness relation to relate
any method that counts as Kuratowski’s method under any meta-method?
No (some entity might be interpretable as more than one method). Can
we let Kuratowski’s method be a relation between constructions and meta-
methods of interpreting those constructions? No; we will have the same
problem all over again on the next level when we inquire into the nature of
meta-methods.

As near as I can tell, I have considered and rejected all possibilities for
formulating PCN. I conclude that no version of PCN is a viable theory, at
least under the present assumption that ordered pairs are not in the primitive
ontology of PCN.

The following summary may help us see the forest through the trees.
An ontologist presents a total picture of reality in terms of some primitive
entities and primitive concepts. After giving a theory of the workings of
the primitive entities and concepts, constructed entities may be introduced,
but first we must have the theory of the primitives. The Class Nominalist
accepts possibilia and classes as the primitive entities, and class membership
as the primitive concept. PCN then adds a primitive notion of naturalness.
Naturalness must be a property or relation. If naturalness is a property, then
what primitive entities have it? We rejected two possibilities here: classes
of ordered pairs for one distinguished method (Possibility 1), and classes of
ordered pairs for each method (Possibility 2). We rejected the first because
it made naturalness conventional, the second because it made an obviously
nonnatural relation, my concocted relation R, natural. On the other hand, if
naturalness is a relation, then we must ask whether that relation belongs to
ontology or to ideology. In the first case, we ran up against an infinite regress.
In the second case, where naturalness was construed as a primitive binary
relation, we noted that its relata are methods; since methods are arbitrarily
constructible from the primitive entities of PCN (as are meta- methods, and
meta-meta-methods...), we found no acceptable entities for the naturalness
relation to relate.

Notice that other views about naturalness are unaffected by my argu-
ment. For example, if relations are taken to be primitive entities, rather than
classes of ordered ‘tuples, then there is no trouble. Even if we take relations
to be classes of ‘tuples, the argument of this chapter does not apply if, rather
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than taking naturalness as a primitive, we analyze it in terms of universals.’
With these real entities doing the work of distinguishing between natural and
unnatural relations, we need not say that one class is privileged as the class
of natural ordered pairs. When we discuss relations, we must first pick a
method M for constructing the ordered pairs. This done, a natural relation
is a class S such that there is some dyadic universal such that S is the class of
all pairs (x,y) (constructed according to M) where x and y instantiate that
universal. At any time, we can switch to another method, because the uni-
versals are “out there”, independent of our methods of constructing ordered
pairs, ready to make the distinction among whatever entities we should pro-
pose as the relations.

5.2.4 Response 1: “The Argument Proves Too Much”

In the next two sections I will consider responses to my argument. The first
response derives from a worry that my argument, if sound, would prove too
much. In philosophy and mathematics, the concept of an ordered pair is
frequently invoked. Surely, the fact that there is no uniquely distinguished
method for constructing the pairs does not mean that these uses of pairs by
philosophers and mathematicians are faulty! But couldn’t my argument be
extended to show these uses illegitimate? And if not, then what is so special
about the use of pairs made by PCN?

I agree that most uses of pairs are legitimate. The case of PCN is special.
What is special about PCN is that it grants significance to the particular ob-
jects to which pairs are reduced, by applying primitive naturalness to classes
of pairs. In fact, it seems to me that my argument applies whenever a Class
Nominalist postulates a non-conventional primitive property or relation of
relations. In contrast, everyday uses of pairs are legitimate because on those
uses no such significance is granted—rather, the pairs are only used to get a
job done.

Let me illustrate my point with what I take to be a representative example
of an ordinary use of ordered pairs. Binary relations—construed as classes of
ordered pairs—are often taken by formal semanticists to be the meanings of
dyadic natural language predicates. Imagine an objector asking: “what set,
exactly, is the meaning of ‘taller than’? What method do you use to make
the pairs?” Presumably, we will answer that it doesn’t matter—any method

9See, however, my reservations about this project in section 6.2.
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is fine. “But wait!”, the objector will say. “This means that what ‘taller
than’ means is a matter of the convention of making ordered pairs. Granted,
word meaning is conventional in that we can choose to make words mean
anything we like. But word meaning isn’t a matter of #his convention, the
convention of making ordered pairs. When we switch methods for making
pairs, ‘up’ doesn’t start meaning down. On to possibility 2 ...”.

I think we should stop this argument short right at this point. We can
accept the conclusion that what ‘taller than” means is a matter of the con-
vention for making pairs, in the following sense: exactly what entity is as-
signed as the semantic value for ‘taller than’ depends on the convention for
making pairs. The conventionality conclusion that is unacceptable for PCN
is, I claim, innocuous in the present case.

This conventionality would be unwelcome only if we required semantic
theory to provide answers to questions like “what entity exactly is the mean-
ing of ‘taller than™’, as if such questions are pre-theoretical and demanding
of an answer. But we can claim that semantic theory seeks to provide a
systematic account of certain intuitions speakers have about their language,
intuitions perhaps about the truth conditions of sentences or about the valid-
ity of inferences. To accomplish this task, semantic theory is free to employ
whatever “internal concepts” it chooses, and this choice is a matter of con-
vention. What entities it uses in its modeling of language is not part of the
“ultimate output” of the theory. They are “artifacts of the model”. David
Lewis agrees:'°

Semantic values may be anything, so long as their jobs get done. Dif-
ferent compositional grammars may assign different sorts of semantic
values, yet succeed equally well in telling us the conditions of truth-
in-English and therefore serve equally well...Likewise, different but
equally adequate grammars might parse sentences into different con-
stituents, combined according to different rules.

So, we only require our semantic theory to generate the correct results with
respect to validity and truth conditions. We don’t care about what partic-
ular entities are assigned as the meanings of predicates. Hence, we don’t
mind when we learn that it is conventional what object is assigned to be the
semantic value of ‘taller than’.

10Gee Lewis (1980, pp. §,6).
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Of course, there is a sense in which the meaning of ‘taller than’ is not
a matter of the pairs convention. ‘Taller than’ does not begin to express
the relation of being shorter than, no matter what convention for making
pairs we choose. But my argument does not contradict this intuition. For
example, whether or not the following sentences are true is #ot a matter of
the convention of making ordered pairs:

(7a) The sentence ‘Ted is taller than Mike’ is true if and only if the sentence
‘Mike is shorter than Ted’ is true

(7b) If a sentence "« is taller than 7 is true (where @ and [ are proper
names) then the sentence " 3 is taller than o™ is false

(7¢) The sentence “Ted is taller than Mike’ is true if and only if Ted is taller
than Mike

(7d) ‘is taller than’ applies to Ted and Mike (in that order)

I suggest that it is claims like these that we have in mind when we think
that what words mean is not a matter of the pairs convention. The phrase
‘what a word means’ is ambiguous. Are we discussing the entity that is as-
signed to be that word’s semantic value? Then we are discussing something
that is (partly) a matter of the convention of making pairs. Or are we dis-
cussing meaning relations between words as in (7a), formal properties of
a word’s meaning as in (7b), or relations between words and the world as
in (7¢) and (7d)? Then what we are discussing is #zot a matter of the pairs
convention.

Similar responses, I think, will answer most worries of the effect of the
multiplicity of methods on uses of relations. The general idea is that we
have a particular task at hand. To accomplish this task, we need the effect
of entities that behave like ordered pairs, but we do not care what particular
entities we use. Kuratowski pairs would be fine, but so would Wiener pairs.
We don’t care how the job gets done, so long as it gets done.

5.2.5 Response 2: Primitive Ordered Pairs

The second response I will consider is analogous to Wetzel and Resnik’s re-
sponse to Benacceraf’s argument. That argument does not touch a believer in
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numbers as primitive, irreducible entities. In the present case, the PCN the-
orist could countenance a new class of primitive entities, the ordered pairs,
and introduce a primitive ordered-pair forming operation. For any objects
# and o, there is exactly one entity that is the true ordered pair of » and
v. Granted, there are many class-theoretic structures that are isomorphic to
the true ordered pairs, but these are not reductions of the ordered pairs. The
property of naturalness, on this view, is had just by classes of true ordered
pairs.

The horn of my trilemma that would no longer be unanswerable would
be the first one. If ordered pairs are counted among the primitive constituents
of the world, then the choice of a method isn’t conventional after all. One
method is distinguished, only now it is misleading to call it a method of
construction: it is the “method” that identifies (x,y) with the true ordered
pair of x and y.

I take it that such a response can indeed escape my argument. Thus, my
argument should be taken as an argument against a particular version of
primitive class naturalism—that version that accepts the orthodox view of
ordered pairs according to which pairs are not primitive entities. However,
I do have some comments on the theory of primitive ordered pairs.

First, we should note that primitive ordered triples will have to be ac-
cepted as well. In class theory, ordered triples are typically constructed from
ordered pairs, once the ordered pairs have been constructed. We could con-
strue the ordered triple of #, v, and w as ({(#,v),w), but this is an arbitrary
choice; we could have picked (w, (#,v)) or (u,(v,w)) instead. Perhaps some
choices are more convenient than others, but surely this has no real ontolog-
ical significance. So the trilemma above would apply to three-place natural
relations. Primitive triples, therefore, had better be accepted. Similar argu-
ments would require that that for every #, if there are any n-place natural
relations then primitive »z-tuples must be accepted.

So it seems that PCN will require primitive n-tuples together with an
n-tuple formation operator for every number 7 such that there are natural
n-place relations. We should notice that these additions would diminish the
appeal of PCN, and specifically that of class nominalism. Class nominalism
attracts us by its simplicity. We need only believe in possibilia and class
theory, and in return we are promised ontological heaven. Now we find
ourselves postulating new entities and operations. The price seems a high
price to pay for the natural/nonnatural distinction. Perhaps we should shop
elsewhere.
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So, when we consider this enhanced version of PCN, we should not forget
that PCN has competitors. The theory of universals, for example, purports
to give an analysis of naturalness, although it pays the price of invoking
universals. Then, there is a view that I favor: the combination of primitive
naturalism with the claim that properties and relations are primitive enti-
ties.!! We need to ask whether the addition of primitive ‘tuples to PCN tips
the scales of philosophical price against PCN in favor of its rivals.

Finally, let us note that one particular (potential) defender of PCN cannot
take the way out offered by primitive ordered pair formation. David Lewis
defends the following principle: “the ‘generating’ relation of a system should
never generate two different things out of the very same material. There
should be no difference without a difference in content.”!? As Peter Forrest
(1986, 9o—1) and D. M. Armstrong (1986, 86—7) have pointed out, primitive
ordered- pair formation would violate this principle. To the extent that this
principle is attractive, this new version of PCN is unattractive.

5.3 Naturalness and “Kripkenstein”

The natural/nonnatural distinction has been thought to help solve Kripke’s
(1982) version of a puzzle of Wittgenstein’s. Surely, by using the word ‘plus’,
I express the plus function, which assigns to any two numbers their sum. But
my behavior seems to be consistent with my meaning something different by
‘plus’: quus. Quus is a function that assigns to x and y their sum if each is
less than some suitably chosen number; seventeen otherwise. If the chosen
number is high enough, argues Kripke, nothing about my behavior could
constitute my meaning plus and not quus when I say ‘plus’. And surely my
behavior determines what I mean. It seems we ought to conclude that I do
not mean plus any more than quus. But I do mean plus and not quus.
Lewis (1983b, pp. 375-77) proposes we solve the puzzle using natural-
ness. Plus, but not quus, is a natural function. Natural functions are prima
facie more eligible to serve as meanings for our words. This is why I mean

1Of course, primitive properties and relations are no more economical in themselves than
primitive ‘tuples. They earn their keep, however, in eliminating the need for possibilia—
standard reductions of possibilia and possible worlds invoke primitive properties and rela-
tions, or similar entities. See section 6.3.1.

12Lewis (1991, p. 38). Lewis wields this principle against structural universals in Lewis
(1986a) and discusses it at length in Lewis (1991, section 2.3).
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plus and not quus. Nothing about my behavior determines this. I may never
have heard of naturalness. It is simply a fact about reference that reference
goes to the most natural candidate—in this case, plus.

The importance of this example is that the notion of naturalness is applied
to numbers. But now a new problem arises. It will be analogous to the
problem of the previous section, only now it will generate a difficulty for all
theories of naturalness, not just for PCN.

There is a difficulty with taking certain number-theoretic functions as be-
ing natural functions, if numbers are constructions from classes and are not
primitive entities in their own right, for to countenance numbers as entering
into natural relations is, I say, to treat numbers “as objects”.

Suppose certain numeric functions are distinguished as the natural ones.
Suppose further that numbers are constructions from classes. So certain
class-theoretic functions are natural. We need to know to which method
for constructing the numbers these classes correspond. There are three pos-
sibilities as before.

Possibility one: there is one privileged method. This I reject since the
fact that the choice of a method for constructing the natural numbers is
conventional would make naturalness as applied to numbers conventional,
which in turn would make it a matter of convention whether I meant plus
or quus by ‘plus’. That seems wrong.

Possibility two: naturalness is a property that applies to any class- theo-
retic function that counts as a natural number-theoretic function under some
method for constructing the numbers. Here, whenever we choose a method
M for constructing the numbers, the natural number-theoretic functions are
those class-theoretic functions that have the property of naturalness and are,
according to M, number-theoretic functions. This is no good, since it gen-
erates too many natural functions. For example, we could construct the
numbers in von Neumann’s way, except with two and seventeen reversed.
The class-theoretic function f that was the plus function according to von
Neumann will have the property of naturalness. But interpreted according
to the new method, / will count as some bizarre number theoretic function.
So this bizarre number theoretic function will turn out natural: an incorrect
result.

Possibility three: naturalness is a relation that holds between methods for
constructing the natural numbers from classes and class- theoretic functions
(i.e. relations). This is rejected on the grounds that “methods” are arbitrar-
ily constructible entities, and so the difficulty is re-introduced. The Zermelo
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method for constructing the numbers might be conceived as the appropri-
ate function from the class w of finite ordinals into the class Z of Zermelo
numbers (i.e. {&,{@},{{@}}...}). Or it might be conceived of as a similar
function with a different domain (some well- ordered class isomorphic to
w). Or it might be a two-place function f from w X Z into {0, 1} (e.g. where
a is the nth ordinal, f(a,s) = 1 if s is the class Zermelo identifies with 7; 0
otherwise). Or a similar two-place function from w x Z into {T,F}. Maybe
it is the “rule” by which we specify the Zermelo numbers, whatever that is
(i.e. something corresponding to the directions: “let O be @&, and let z+1 be
{n}”).

Since “the Zermelo method” is arbitrarily constructible, we have our old
trilemma. Is there one entity that is the method of Zermelo? No. Is the
method of Zermelo all of these entities? No. Is the method of Zermelo a
relation involving meta-methods? No.

It should be clear that this argument is not particular to numbers. It
generalizes whenever entities, like numbers, are capable of multiple equiv-
alent constructions. I conclude, therefore, that only bona fide entities can
enter into natural relations. “Entities” that are mere constructions from
other objects and capable of multiple equivalent constructions cannot en-
ter into natural properties or relations. More precisely, while most talk of
mere constructs can be suitably paraphrased, talk of mere constructs hav-
ing natural properties and entering into natural relations cannot be suitably
paraphrased, and must therefore be abandoned.

There is no problem to the solution of the Kripkenstein puzzle, of course,
if numbers are taken as primitive entities. Furthermore, there may be some
other solution to the puzzle that invokes naturalness, but not of number-
theoretic functions. But if numbers are viewed as mere constructions from
classes, then the solution to the puzzle in terms of natural functions is un-
tenable.



Chapter 6

Properties, Universals, and
Naturalness

The time has come to discuss a class of competitors to primitive naturalism:
“sparse theories of universals”, especially a theory suggested by the writing
of D. M. Armstrong. As I have indicated in chapter 1, it has been thought
to be possible to use sparse universals to analyze naturalness. In this chapter
I present these theories and examine the possibilities for analyzing natural-
ness in terms of universals. The outlook for a fully general analysis is not
good. Finally, I criticize Armstrong’s contention that immanent universals
are superior to transcendent universals.

6.1 Sparseness vs. Abundance; Immanence vs. Tran-
scendence

In this section I characterize various theories of universals by focusing on
two questions. The first is the question of whether universals are sparse or
abundant. The second is the question of whether universals are immanent
or transcendent.

I will approach these questions by considering how David Lewis’s D.M.
Armstrong answers them. Let me explain. In his two volume work Univer-
sals and Scientific Realism, Armstrong laid out a theory of universals that
was vague and inexplicit on the question of immanence. David Lewis inter-
prets Armstrong in a certain way in On the Plurality of Worlds. Since then,
Armstrong has been more explicit: in his book A Combinatorial Theory of

99
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Possibility. However, I find Armstrong’s version of his own theory difficult
to understand, and therefore difficult to critically evaluate. I will therefore
confine my remarks to Lewis’s clearer Armstrong, who I will (somewhat un-
fairly) persist in calling “Armstrong”.!

The terms ‘universal’ and ‘property’ are often used interchangeably, but I
need to separate them when discussing sparse universals. I reserve the words
‘property’ and ‘relation’ for entities that obey the abundance assumption
given in chapter 2: one property for every class of things; one n-place rela-
tion for every class of n-tuples. On some views of universals, universals are
identifiable with the properties and relations, but for now let us forgo this
simplification.

The distinction between universals and particulars is familiar. Particulars
include people, planets, protons, etc. Universals, such as roundness, unit
positive charge, etc. are instantiated by particulars. So far, no surprises.
But I want to look at two main differences between Armstrong’s theory of
universals and traditional theories. Armstrong’s universals are sparse, and
they are immanent, or “wholly present” in their instances.

Universals are often taken to be abundant, rather than sparse. Exactly
what we take the term ‘abundant’ to mean is somewhat open. A universal
may be admitted for every meaningful predicate of ordinary language. We
might have a universal for “every way a thing could be”, on some suitable
interpretation of this phrase. Abundant universals would surely be closed

! Armstrong (1989a) introduced a non-mereological relation called “constituency”. Ob-
jects, properties, and relations are constituents of the states of affairs (“thick particulars™)
that involve them. Also, properties and relations are constituents of their structural combi-
nations. What is relevant to our purposes is that Armstrong can characterize the claim that
universals are immmanent as follows: universals are constituents of the (thick) particulars (i.e.
states of affairs) that instantiate them.

This affects various points in my discussion. In section 6.3.2, for example, I ask whether
transcendent universals explain resemblance better than immanent universals. My answer
is no, but it is based on Lewis’s interpretation of ‘immanence’. Perhaps Armstrong’s con-
ception of immanence fares better!

The reason I do not consider Armstrong’ own conception of immanence is that we are
told so little about constituency. Armstrong tells us that universals are not parts of their
instances (19894, p. 41), and yet they are “present as a whole in” their instances (19784,
p. 68). What, then, is this relation of constituency? Before I know more about it, I cannot
evaluate a view based on it.

Note also that the real Armstrong’s view has distinctive features along other dimensions.
For one, Armstrong rejects uninstantiated universals (19784, p. 113). For another, he says
that universals and particulars are “abstractions from” states of affairs (19894, p. 43).
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under the Boolean operations.

For our purposes here, let us construe abundance broadly. Say that a
property P and a universal U correspond iff the set of U’s possible instances
is identical to the set of P’s possible instances. I take the claim that universals
are abundant to be the claim that for every property there is a corresponding
universal. Recall my chapter 2 abundance assumption for properties: one for
every class of things.

In contrast, on a “sparse” view of universals, only a select minority of
properties have corresponding universals.? Like ‘abundant’, ‘sparse’ is schematic.
I will characterize sparseness in roughly the same way that Armstrong does,
although no precise criterion is given. One non-negotiable constraint on the
sparseness of universals for Armstrong is the following:

(S) A property (relation) has a corresponding universal only if that prop-
erty (relation) makes for similarity

(See section 3.3.1 on the notion of making for similarity.)

As an example of the application of (S), suppose that redness and blue-
ness are both universals.> This seems consistent with (S), since shared color
seems to be a genuine similarity. But the sharing of the property redness-
or-blueness does not seem to count as a genuine similarity. A red object
could be quite dissimilar to a blue object. Thus, (S) prohibits a universal
of redness-or-blueness. Similar remarks apply to negations of universals. In
fact, for Armstrong there are no disjunctive or negative universals (1978b,
pp. 19-29).

For Armstrong, the properties that correspond to universals are an elite
minority of the entire set of properties.* Likewise, the perfectly natural prop-
erties are an elite minority of all the properties. This analogy suggests the
possibility of analyzing perfect naturalness in terms of sparse universals. In
the next section, I will discuss this analysis.

There is more to be said about sparseness, but I postpone that discus-
sion until section 6.2. Let us move to the second feature of Armstrong’s

2This idea runs throughout Armstrong (1978a,b). See, for example, Armstrong (1978b,
pp. 9-12).

3 Armstrong would not accept a universal redness—see Armstrong Armstrong (1978b,
p- 117).

“However, Armstrong would not put matters this way, since he does not accept the ex-
istence of the abundant properties—instead, he accepts “propositional predicates” (19784,

pp- 3-6).
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view. His universals are immanent—that is, they are “wholly present” in
their instances. Armstrong contrasts immanent universals with transcendent
universals (1978a, chapter 7). Transcendent universals, or “Forms”, are sup-
posed to be “separate” from their instances, to which they are linked by the
relation of “participation”.

We have what looks like a disagreement: are universals immanent—
“wholly present” in their instances—or are they transcendent—*separate”
from their instances? Let us call the view that universals are immanent “IU”,
and the view that universals are transcendent “TU”. So far, my characteri-
zation of the dispute over immanence is too vague. What is it for a universal
to be “wholly present” in its instances? What is it for a universal to be “sep-
arate” from its instances?

First, the issue is mereological. The claim that universals are wholly
present in their instances would seem to mean at least that universals are
parts of their instances. If redness is a universal, then any given red thing
has the universal redness as a part. Thus, if x and y are both red, then x
and y overlap. That is, they have a part in common; namely, the universal
redness.

“Separate” too may be taken mereologically. In this sense, when the de-
fender of TU claims that “universals are separate from their instances”, what
is meant is that universals are (mereologically) disjoint from their instances.

According to IU, then, a universal is a part of each of its instances. Since
universals are supposed to be “wholly” present in their instances, it might
be thought that we must add that the whole of the universal is a part of
each instance, i.e. that every part of the universal is a part of the instance.
However, this would be redundant since the phrases:

x is a part of y

every part of x is a part of y

are equivalent.

Armstrong intends his claim that universals are immanent to mark a pro-
found metaphysical difference between his view and views that deny this
claim. For example, Armstrong criticizes Platonism, a version of TU, for its
failure to locate an object’s properties (“Forms”) in that object (19784, p.
68):

Is it not clear that 4’s whiteness is not determined by 4’s relationship
with a transcendent entity? Perform the usual thought- experiment and
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consider a without the form of Whiteness. It seems obvious that 2 might
still be white...

It is important to see that this argument succeeds only against a doc-
trine of transcendent universals. It would fail...against the view that
the Form is something present as a whole in a...

But I will now argue that if there is nothing to “wholly present” beyond
the present mereological claim, then there is no genuine metaphysical signif-
icance to the question: are universals immanent or transcendent?

Consider the universal redness, and consider a particular x that is red.
According to TU, redness is not a part of x. But now consider the fusion
of x and all of its universals. Redness is indeed a part of this entity. Why
not consider this fusion the particular? In what follows I will develop this
intuition.

TU countenances particulars; we refer to and quantify over these objects
in everyday language. It also countenances universals in which those particu-
lars participate; these may be predicated of particulars in ordinary language.
Moreover, no particular overlaps any universal.

Consider any particular x that participates in universals U, U,,.... Let y
be the fusion of x and the universals U, U,,.... Let us call y a thick particular
—the fusion of a particular with all of the universals in which it participates.
We may also introduce a new term ‘participates®’: a thick particular partic-
ipates* in a universal iff the original particular from which it was derived
participates in that universal.

A hybrid form of TU is “HTU”. According to HTU, it is thick particulars
rather than ordinary particulars that are properly called “particulars”; it is
thick particulars that we refer to and quantify over in ordinary language; we
predicate of them the universals in which they participate*.

Imagine a vocal advocate of IU berating a defender of TU: “You are mis-
taken in your belief that universals are transcendent. Change your ways;
admit that universals are in their instances.” Then imagine the reply: “I
accept your criticism. I was wrong in accepting TU. I now accept HTU. Uni-
versals are indeed parts of their instances—universals are contained in the
particulars (that is, thick particulars) that participate (that is, participate*)
in them.”

The “concession” by the defender of TU is clearly no concession at all.
He has changed no metaphysical views; all he has changed is what he calls
“particulars”. Before he took the term ‘particular’ to refer to objects without
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their universals, he now takes that term to refer to fusions of objects and their
universals. But he has accepted no new entities, and no new facts about
entities he accepts.

Thus, if immanence were merely mereological, then there would be no
real metaphysical dispute over immanence.

We can illustrate the situation with a picture. Let us begin with a partic-
ular, x, that instantiates universals U,, U,, ...To begin on neutral ground, let
us mereologically subtract U,, U,, ...from x; call the result TP. TP may be
called a “thin particular” since it contains no universals that it instantiates as
parts.’ According to TU, TP is simply x, the object we began with, since U,,
U,, ...weren’t part of x to begin with. According to IU, on the other hand,
TP is distinct from x since x contained those universals. Now consider the
following diagram:

TU IU

TP

Figure 6.1: Particulars: TU vs. IU

The circles in the diagram represent what the theory in question calls a “par-
ticular”. The diagram makes it plain that the only difference between TU
and IU (as I have so far characterized them) is semantic. Each accepts the
same metaphysical picture; they merely draw the circles differently—that is,
they differ over the reference of ‘particular’.

Surely the dispute over immanence is metaphysically significant. What
has gone wrong? We have left out a crucial element of the claim that univer-
sals are “wholly present” in their instances. David Lewis is clear on this mat-
ter. In his presentation of Armstrong’s view in On the Plurality of Worlds, he
says that immanent universals are located exactly where their instances are
located. And it is not merely that part of the universal is co-located with one

<»

5 Armstrong uses the term *thin” particular’ in Armstrong (19784, pp. 114—5), butin a
different (and somewhat mysterious) sense. Lewis mentions what I call thin particulars in
Lewis (1986¢, p. 65).
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instance, part of it with another. The entire universal shares total spatiotem-
poral location with each of its instances. Thus, universals are “recurrent”,
or “multiply located” (1986¢, p. 64). A universal is all here, and also all
there.

This added feature provides a genuine metaphysical difference between
IU and TU. Transcendent universals are typically taken to exist “outside
of” the spatiotemporal world. Let us return to the diagram. The difference
would be in where I draw the universals U, U,... On the TU part I could
draw those universals anywhere, indicating that they are not in space and
time. But on the IU part, I need to indicate that U}, U,... are co-located with
TP. The diagram must reflect the difference.

We may construe the opposing view, TU, as taking the opposite position:
no universal spatially coincides with any particular. In fact, let us take this
to follow from a more basic claim: that universals have no spatiotemporal
location whatsoever.

But I want to draw a moral from our consideration of HTU. We should
separate out two components of the claim that universals are immanent, or
“wholly present” in their instances. One component, the mereological com-
ponent, is the claim that universals are parts of their instances. The other
component, the spatiotemporal component, is the claim that universals share
spatiotemporal location with their instances. Likewise, the claim of TU that
universals are transcendent, or “separate” from their instances has two com-
ponents. The mereological component is the claim that no universal overlaps
any particular. The spatiotemporal component is that no universal spatially
coincides with any particular (in virtue of the fact that universals lack spa-
tiotemporal location). As we have noted, the spatiotemporal components
seem to provide the real metaphysical difference between the views.

Here are two questions. Question #1: are universals sparse or are they
abundant? Question #2: are universals immanent or are they transcendent?
Using these questions we can distinguish four possible theories of universals.
The first theory, “sparse IU”, takes the first option in both questions. Arm-
strong’s theory is a version of sparse IU. Another theory, which we might
call “sparse TU”, accepts sparse transcendent universals. “Abundant TU”
accepts the second answer to both questions. A fourth and rather odd theory,
“abundant IU”, would accept abundant immanent universals.

Only the first two theories, the ones whose universals are sparse, are of
any help in analyzing naturalness. The next section considers the possibil-
ity of analyzing naturalness in terms of sparse universals. What I say there
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applies equally to the first two theories: sparse IU and sparse TU.

6.2 Universals and Naturalness

In the following section I examine the possibility of using a sparse theory of
universals to analyze naturalness.

The project in which I am interested is that of using a sparse theory of
universals to analyze the concept of naturalness as applied to the abundant
properties (and relations). For example, the universals will be used to pick
out which properties are perfectly natural.

As mentioned in chapter 1, Lewis’s suggestion is that ‘perfectly natural’
might be analyzed in terms of universals as follows:

(Ux) property (relation) P is perfectly natural iff it corresponds to some uni-
versal

So far, I have only mentioned one constraint on sparseness: (S). This leaves
many questions of the form ‘Does P correspond to a universal?’ unanswered.
Indeed, there are various ways to develop a sparse universals view. On some
ways (Ut) might be acceptable; on others it might not.

Armstrong’s leading intuition is that what universals there are is an a
posteriori matter, to be established by “total science”. We have reason to
postulate only those universals required to explain the genuine similarities
in the world.®

This conception seems to match with Conception 2 of perfect naturalness
from 3.3.1. Conception 2 invokes natural properties to explain resemblance;
Armstrong invokes universals for the same purpose. On Conception 2, (con-
sistent) conjunctions and structural combinations of perfectly natural prop-
erties and relations are perfectly natural. With one exception, Armstrong too
accepts conjunctive and structural universals, where a “conjunctive” univer-
sal is one that is the conjunction of others; a “structural” universal is one
that is a structural combination of others, called its “constituents” (1978b,
pp. 30, 68—71). (The exception to Armstrong’s acceptance of conjunctive
and structural universals is that he does not accept the existence of a univer-
sal in a world in which it has no instances (1978a, p. 113). For example,

®This idea is implicit in much of Armstrong (1978a,b). See, for example, the introduction
to Armstrong (1978a) and Armstrong (1978b, pp. 7-9).
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if something is U, and something else is V/, but nothing is both U and V,
then universals U and V will have no conjunction (at that possible world).
I will ignore this complication in what follows.) So (Ut) provides, perhaps,
an adequate analysis of Conception 2- style perfect naturalness.

(Ux) does not, however, provide an adequate analysis of Conception-1
style perfect naturalness. Conceptions 1 and 2 disagree. As we saw in section
3.2.1, conjunctions and structural combinations of perfectly natural proper-
ties are not perfectly natural. This means that (Ut) must be modified, if we
are to have an analysis of Conception 1-style perfect naturalness. Otherwise,
(Ux) would generate perfectly natural properties corresponding to structural
and conjunctive universals. But we can restrict (Ut):

(U2) property (relation) P is perfectly natural iff there is some nonconjunc-
tive, nonstructural universal U such that the set of P’s possible in-
stances is identical to the set of U’s possible instances

It seems, then, that we can evade the problems caused by conjunctive and
structural universals by offering (U2) as our definition of ‘perfectly natural’,
as construed by Conception 1. (From now on, I consider only Conception 1-
style naturalness.) But there is more to naturalness than perfect naturalness.
I will argue that universals cannot help us in analyzing the more natural than
relation.

Universals, at first blush, seem only to help with the upper end of nat-
uralness. How to use them to analyze relative naturalness? One strategy
would employ conjunctive and structural universals. The intuition behind
this strategy is that conjunctions are less natural than their conjuncts, and
structural universals are less natural than their constituents. For any prop-
erty or relation P that corresponds to a universal, denote that universal by
“univ(P)” (I assume there are no distinct, necessarily coextensive universals
according to the sparse views). I think that it is plausible that the following
gives a sufficient condition on the more natural than relation:

(C1) For any two distinct properties (relations) P and Q that correspond to
universals, if univ(P) is a constituent or a conjunct of univ(Q) then P
is more natural than Q

However, this condition does not seem to be necessary. First, suppose the
following are equally natural and correspond to universals: properties P,
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and P,, and relations R, and R,. Now, let Q, be the property of having two
proper parts x and y such that R,xy and P,x and P,y; let Q, be the prop-
erty of having two proper parts x and y such that R,xy and P,x and P,y.
Q, corresponds to a structural universal that has univ(P;) and univ(R,) as
constituents. Q, corresponds to a structural universal that has univ(P,) and
univ(R,) as constituents. Intuitively, P, is more natural than Q,. Similarly,
P, seems more natural than Q,. P,, P,, R, and R, are all on the same “level”
of naturalness, whereas Q, and Q, seem to be on a different “level”. And
yet, were the ‘if’ in (C1) changed to ‘if and only if’, these intuitive judg-
ments would be overruled. Univ(P,) is neither a conjunct nor a constituent
of univ(Q,).

It might be thought that we can repair the difficulty as follows. Extend
(C1) into a necessary and sufficient condition for the relation being more
natural* than:

(C2) For any properties (relations) P and Q that correspond to universals,
P is more natural* than Q iff univ(P) is a constituent or a conjunct of

univ(Q)

Then, analyze the more natural than relation as follows:

(C3) For any properties (relations) P and Q that correspond to universals,
P is more natural than Q iff there are properties (relations) P’ and Q’
that correspond to universals and are such that i) P and P’ are equally
natural, ii) Q and Q’ are equally natural, and iii) P’ is more natural®

than Q’

In the example above, (C3) yields the result that P, is more natural than Q,,
for P, is equally as natural as P,, Q, is equally as natural as itself, and, by
(C2), P, is more natural* than Q, (since univ(P,) is a constituent of univ(Q,)).

Unfortunately, (C3) saddles us with a new difficulty: that of providing an
analysis of the equally as natural as relation in terms of universals. I do not
see how this could go.

There is another, independent difficulty with the project of defining ‘more
natural than’ along these lines. The proposals so far have only concerned
properties that correspond to universals. But what about other properties?
For example, it seems intuitive to say that the property being red or green is
more natural than the property being grue or being identical to George Bush
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or being five feet away from someone with 6 coins in his pocket. But neither
of these properties corresponds to a universal, since each fails the similarity
test contained in (S). Therefore, (C3) is silent with respect to them.

An entirely different method for characterizing relative naturalness would
have consequences for properties that don’t correspond to universals. Begin
by using (U2) to characterize perfect naturalness, and then use the notion of
distance from a set to characterize relative naturalness as was explained in
section 3.3.1:

(5) P is at least as natural as Q iff P is at least as close to N as Q is

(where N is the set of perfectly natural properties and relations).

This method is fraught with difficulty. First, it doesn’t achieve the goal
of analyzing naturalness in terms of universals, for it invokes an additional
primitive: distance from a set. That notion was used in chapter 3 to illumi-
nate naturalness, but in the end naturalness was the primitive. In the present
case, the goal is to avoid taking naturalness as a primitive, so we really are
engaged in analysis. (5) here is being offered as a definition of ‘at least as
natural as” and hence we would need to take as primitive distance from a set
(unless some way were found to analyze it). In addition to appealing to a
new primitive, (5) is wrong. Let us adapt our description of Onion, the world
of endless complexity, as follows: no non-structural universals are instanti-
ated at Onion—rather, every universal is a structural universal. So, (U2)
implies that there are no perfectly natural properties at Onion. Thus, most
properties at Onion will not supervene on N at all (the only exceptions will
be properties that supervene on the spatiotemporal relations alone), and (5)
implies that any two such properties are equally natural—an unacceptable
result.

In section 3.2.3, I showed how to get around (5)’s problems by offering
the weaker (5a) and (5b). But (5a) and (5b) are of no use to us here, for they
do not give general necessary and sufficient conditions for one property or
relation being at least as natural as another. They merely give such conditions
in certain special cases. Their restricted nature did not cause problems in
chapter 3, since my goal there was not analysis of naturalness. However, the
present goal is analysis.

It seems that, while we can define ‘perfectly natural’ in terms of sparse
universals, we cannot so define ‘more natural than’. Thus, using universals
we cannot match the power of primitive naturalism. Given the results of
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section 4.2.1, this is a crucial shortcoming. I argued that the definition of
‘duplicate’ given by Lewis in terms of ‘perfectly natural’ was unsatisfactory.
A revised version was given, but that version employed ‘more natural than’.
Since the analysis of duplication is one of the key uses for naturalness, we
cannot simply abandon the more natural than relation.”

6.3 Armstrong’s Objections to Transcendent Univer-
sals

6.3.1 Two Theories of Abundant Universals

In the previous section I considered the possibilities for using a sparse theory
of universals to analyze naturalness. I argued that the project had difficul-
ties. I favor instead the view that naturalness should be taken as a primitive
distinction among properties conceived abundantly, where those properties
are not reduced to classes of possibilia.

In this section I say briefly why I favor this view. What I say will fall
far short of a full justification, but that would (thankfully) be beyond the
scope of this dissertation. I want to accept abundant properties, for they
seem theoretically important.® These abundant properties (relations) could
be construed as classes of (‘tuples of) possibilia. But in chapter 5 I raised a
difficulty for applying primitive naturalness to sets of pairs of possibilia, at
least when pairs are constructed arbitrarily from sets. My argument does not
apply if primitive ‘tuples are accepted. But I do not even wish to construe
relations as sets of primitive ‘tuples of possibilia, for the simple reason that I
am wary of possibilia. I would rather reduce the possibilia to properties and
relations than vice versa. So I seem to be stuck with the abundant properties
as sui generis entities (here is an exception to my usual neutrality on such
ontological issues). At least, this is the official view that I want to work
with.

(Since I am no longer discussing sparse properties or universals, I now

"Lewis (1983b) details some of the proposed uses for naturalness, and many involve
duplication. Moreover, the solution to the problem of “The Content of Thought and Lan-
guage” on p. 372 in that paper requires naturalness to come in degrees (and to apply to
properties that don’t correspond to universals at that). But see note 37.

8See, for example, Lewis (1983b, pp. 348) and Lewis (1986¢, 66—67) on the need for an
abundant conception of properties.
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use the terms ‘property’ and ‘universal’ interchangeably. Likewise, I will use
‘participates’ and ‘instantiates’ interchangeably.)

One view of abundant properties would have these properties be wholly
present in their instances. This is the view I called “abundant [U” at the end
of section one, the “odd” view. David Lewis mocks abundant IU in Lewis
(1986¢, p.67):

...it is just absurd to think that a thing has (recurring or non- recurring)
non-spatiotemporal parts for all its countless abundant properties.

This view may be absurd, but if it is absurd, then it is the spatiotemporal
component of “wholly present” that makes it absurd.

To see this, let us return to the hybrid theory HTU that we constructed in
section 6.1. A “particular”, according to this view, is really a thick particular:
a fusion of an ordinary particular with all of its universals. A thick partic-
ular contains as parts all of the universals in which it participates*. This
claim does not become absurd when we add that these universals are abun-
dant. In fact, if one believes in abundant universals and arbitrary fusions
of things, then one is committed to this conclusion. What I think appears
absurd to Lewis is the claim that a particular, whether thick or no, shares
total spatiotemporal location with all of its abundant universals.

I want to believe in an abundant conception of universals. But I am un-
willing to accept immanent universals. In part this is because of the oddness
of abundant IU. Another reason is that the spatiotemporal component of
immanence is prima facie implausible in its own right. The notion that an
entity can be multiply located—all of it is here and also all of it is there—is
one that, other things being equal, we should reject.

If there are arguments that immanent universals are superior to transcen-
dent universals then, assuming we need universals at all, this presumption
against immanence would be outweighed. Armstrong offers such arguments.
But I will argue in the next section that these arguments fail.

Thus, I take it that the way is clear to accepting abundant TU. Let me
summarize my choices with respect to properties and relations in this section.
I chose:

i) abundant over sparse (since the latter couldn’t be used to define natural-
ness and the former are theoretically useful)

ii) sui-generis over classes of possibilia (because of chapter 5 and because I
am wary of possibilia)
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iii) transcendent over immanent (because immanence is prima facie implau-
sible and is not—contra Armstrong—superior to transcendence)

6.3.2 Armstrong’s Arguments against Transcendent Universals

In the present section I will critically assess Armstrong’s arguments against
TU, the view that universals are transcendent. This view is opposed to IU,
the view that universals are immanent. The arguments in this section are
designed to apply to TU, but not to IU. Therefore, if the arguments are con-
vincing, they would point to a superiority of IU over TU. But I will argue
that none of the arguments is convincing. None of the arguments presents
an unsavory bullet for the proponent of TU to bite.

The Regress Argument

...the Relation regress, first stated, as far as  know, by Ryle [Ryle (1939,
137-8)], appears to be vicious. Particulars participate in Forms. The
relation of participation is therefore a type having indefinitely many
tokens. But this is the very sort of situation which the theory of Forms
finds unintelligible and insists on explaining by means of a Form. The
theory is therefore committed to setting up a Form of Participation in
which ordered pairs consisting of a particular and a first-order Form
participate.

Once again, however, the problem is reproduced. If this second- order
participation is something different in nature from first-order partic-
ipation, then it requires to be explained by third-order participation,
and so ad infinitum. But if second-order participation is the same in
nature as first-order participation, then the analysis of first-order par-
ticipation is proceeding in terms of this (first- order) participation in a
Form, which is circular (Armstrong, 19784, p. 70).

This argument is quite straightforward. I will not spend much time dis-
cussing it, since I believe David Lewis’s discussion in “New Work for a The-
ory of Universals” (pp. 352—355) to be thorough and conclusive. The argu-
ment fails because it misconstrues TU. It assumes that the TU-ist attempts to
provide an analysis of all predication, of all sameness of type. Thus, Arm-
strong assumes that if for various particulars x and Forms F, x participates
in F, the TU-ist must postulate a Form of participation. If the goal of TU
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were to analyze all predication, all sameness of type, then this would indeed
follow. But, as Lewis points out (1983, p. 353):

Doing away with all unanalysed predication is an unattainable aim,
and so an unreasonable aim. No theory is to be faulted for failing to
achieve it. For how could there be a theory that names entities, or
quantifies over them, in the course of its sentences, and yet altogether
avoids primitive predication? Artificial tricks aside, the thing cannot be
done.

As Lewis points out, Armstrong’s own version of IU does not accomplish the
task of eliminating primitive predication. The relation that holds between
Armstrong’s universals and their instances, instantiation, is not analyzed.

Thus, I take it that neither IU nor TU seeks to analyze all predication. TU
takes the relation of instantiation as a primitive; TU takes the participation
relation as a primitive.

This response to the Relation Regress is the same as the response to an-
other argument offered by Armstrong. He calls it “The restricted third man”

argument (19784, pp. 72—73):

Consider the Forms. Each of them is its own unique self. But they do
have something in common. They are different tokens of the one type.
They are all Forms. Formhood is a one which runs through this many.
So must there not be a Form of Formhood?...

...Consider the collection of first-order Forms plus the Form of Form-
hood. The members of this expanded collection have something in
common. The different tokens are all of the same type. In consistency,
therefore, they must all said to participate in a third- order Form of
Formhood. The regress then continues. It is either vicious or, at best,
uneconomical.

Now, if this “third-order Form of Formhood” were identical to the original
Form of Formhood, then there would be no regress. But Armstrong argues
that a property cannot have itself as one of its properties (1978b, chapter 19
section VI, and chapter 23 section II). Thus, he claims, the original argument
stands.

Without considering whether Armstrong is correct in rejecting the notion
of a property instantiating itself, I think we can dismiss this argument in the
same way that we dismissed the first regress argument. TU is not engaged
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in the project of analyzing all predication. As well as taking the two-place
relation of participation as a primitive, I assume that the TU-ist also takes
the notion of a Form (universal) as a primitive.” So the TU-ist will reject the
step in the argument where a Form of Formhood is invoked. There is no
Form of Formhood—the fact that the various Forms are all Forms is a fact
incapable of further analysis.

The Duplication Argument

Another argument is contained in the following passage (Armstrong, 19784,
p. 69):

Suppose that « and & have quite different properties. According to the
theory of transcendent Forms they are in themselves exactly the same.
Their only differences lie in their relational properties: their relations
to a different set of Forms. But may there not be a difference of nature
in 2 and b, beyond mere numerical difference? Yet this difference the
theory of Forms could not account for.

I think we may interpret Armstrong as follows. When Armstrong says that
x and y are “in themselves exactly the same”, we may take him to be saying
that x and y are duplicates. Thus, the argument seems to be:

Duplication Argument 1

(1) If TU is true, then 4 and b are duplicates
(2) a and b are not duplicates

(3) Therefore, TU is not true

Premise (2) is true by stipulation: we are asked to consider objects 4 and 5
that are not exactly alike. And premise (1) has some plausibility. Imagine a
TU-ist trying to claim that 2 and 4 are not duplicates. He might point out
that only a is white. “But,” Armstrong would respond, “according to you,
whiteness is a relational property. After all, a is white because of its relation
to a wholly separate entity: the form of whiteness. The “difference” you
have pointed out between a and 5 is not a difference between the marbles
considered in themselves. It is a mere relational difference.”

? Alternatively, Formhood might be analyzed in terms of participation.
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As initially appealing as premise (1) may seem, the defender of TU has a
response. We must distinguish two senses of ‘relational property’. One we
may call the “trivial” sense:

P is relational in the trivial sense = for any object x, if P is had
by x then this is in virtue of x’s relations to objects wholly distinct
from x

Clearly, if TU is true then every property is relational in the trivial sense, for
according to TU objects do not contain their properties as parts.

The other sense we may call the non-trivial sense. How we define this
sense depends on the exact method for drawing the various distinctions that
are the subject of this dissertation; I favor using naturalness to analyze all
the rest. At any rate, one sufficient condition for a property’s being non-
relational (in a non-trivial sense) is its being intrinsic.'°

What the TU-ist will claim is that it is the non-trivial sense of ‘relational’
that is relevant to the question of whether 2 and 4 are duplicates. Let us
suppose that the property being white is an intrinsic property.!! Objects a
and b, then, are not duplicates, since they differ over an intrinsic property.
Granted, this property is relational in the trivial sense. But it is zot relational
in the non-trivial sense since it is intrinsic, and hence we are free to use it in
explaining why a and & are not duplicates. Thus, we can reject premise (1).
TU is consistent with 2 and 4 failing to be duplicates.

Suppose Armstrong were to stipulate that he intends to be using ‘du-
plicate’ in such a way that relational properties in the trivial sense are the
relevant properties. That is, x and y are duplicates in this new sense iff they
share all non-relational properties in the trivial sense. We may call this the
trivial sense of duplication. The argument now reads as follows:

Duplication Argument 2

(1) If TU is true, then 4 and b are duplicates in the trivial sense

19Giving a necessary and sufficient condition for a property’s being relational is tricky,
and I won’t attempt it. The trickiness results from the fact that some extrinsic properties
seem non-relational; e.g. haecceities like being George Bush.

' In fact I am not sure that color properties are intrinsic. See section 1.1. However, even
if they are not intrinsic, surely objects within a given world that differ in color differ with
respect to some intrinsic properties (microscopic properties of surfaces, for example).
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(2) a and b are not duplicates in the trivial sense
(3) Therefore, TU is not true

The TU-ist will presumably grant premise (1) of this version of the argument.
But premise (2) will be rejectable. For 4 and 4 to fail to be duplicates in the
trivial sense, they would have to differ with respect to some property that is
non-relational in the trivial sense. But the defender of TU does not grant the
existence of any such property since on that view every property is relational
in the trivial sense.

The Argument From Causal Powers
A related argument is the following (Armstrong, 19784, p. 75):

It is natural to say both that the causal powers of a particular are de-
termined by its properties, and that these powers are determined by the
particular’s own self and not by anything beyond it. But if the theory
of transcendent universals is accepted, a thing’s properties are not de-
termined by its own self, but rather by the relations it has to Forms
beyond itself.

Armstrong’s claim here is that TU is inconsistent with the truth of:

(CP) The causal powers of an object are not determined by objects “beyond”
it

From our discussion of the meaning of ‘wholly present in’, we know to dis-
tinguish two senses of ‘beyond’. On one sense, (CP) means:

(CP1) The causal powers of an object are not determined by any objects not
a part of it.

As I see it, the TU can simply reject (CP1). And furthermore, the rejection
of (CP1) need be no embarrassment. HTU entails (CP1), while TU (we may
grant), entails the denial of (CP1), and yet HTU is no different metaphysi-
cally from TU. So the question of whether (CP1) is true or not is simply the
question of whether we mean thick or thin particulars by ‘object’. In reject-
ing (CP1), the TU-ist is making a mere semantical claim, and not going out
on a metaphysical limb.

Alternatively, Armstrong may be taken to be claiming that TU is incon-
sistent with the following truth:
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(CP2) The causal powers of an object are not determined by any objects not
sharing spatiotemporal location with it

I suppose the defender of TU must bite the bullet and reject (CP2). But I do
not see any great disadvantage in doing so. (CP2) does not strike me as being
especially compelling.

I must grant that there is a sense of (CP) in which it may be counted as
part of common sense. For example, the following seems true:

My causal powers are not determined by objects “beyond” me.
For example, my ability to lift this barbell is independent of the
outcome of the Olympic weightlifting championship.!?

But this intuition seems to be captured by the following principle, which
principle may be accepted by the TU-ist:

(CP3) The causal powers of an object are completely determined by what
intrinsic properties that thing has, together with the laws of nature—
that is, two things with the same intrinsic properties in worlds with the
same laws must have the same causal powers

Since I have my intrinsic properties just in virtue of the way I am in myself,
and not in virtue of my relations to the competitors in the Olympic champi-
onship, this seems to capture the intuition in question.

To see that TU does not in any way preclude (CP3), recall the discussion
of the Duplication Argument, in which it was argued that universals being
transcendent in no way precludes the possibility of a (nontrivial) distinction
between intrinsic and extrinsic properties.

The TU-ist should reject (CP1) and (CP2). Granted, there is an intuition
that the causal powers of an individual x are determined by what x is like,
considered in itself. But (CP3) vindicates this intuition. Thus, the TU-ist may
do his duty to common sense by accepting (CP3), and may fairly reject (CP1)
and (CP2).

12The relevant sense of ‘determined’ here is tricky. For example, I might become depressed
upon learning of the outcome of the championship, and thereby become unable to lift the
barbell, and in this sense the outcome of the championship can “affect” my ability to lift
the barbell. But this would be because the outcome of the championship would cause cer-
tain changes in my intrinsic properties. My causal powers are determined (in the relevant
sense) by my intrinsic properties, and not by the outcome of the championship. The precise
intuition behind the example of the barbell is contained in (CP3).
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The Subtraction Argument

Next we return to a passage from Armstrong considered above (19784, p.
68):

Is it not clear that a’s whiteness is not determined by a’s relationship
with a transcendent entity? Perform the usual thought- experiment and
consider 2 without the form of Whiteness. It seems obvious that 2 might
still be white. So a4’s being white is not determined by 4’s relation to the
Form.

Let 2 be any white thing. Armstrong seems to argue as follows:
Subtraction Argument

(1) Possibly, 4 is white but does not instantiate Whiteness
(2) if (1), then TU is false
(3) Therefore, TU is false

At first glance, the Subtraction Argument looks blatantly question begging.
Premise (1) amounts to a flat denial of TU, for according to a TU-ist, to be
white just is to instantiate Whiteness. Surely, a TU-ist would be within his
or her rights in simply rejecting (1).

Can any progress be made? I think so. Armstrong seems to be relying
implicitly on the fact that whiteness is an intrinsic property to justify (1).!3
The idea seems to be that since whiteness is intrinsic, a’s being white cannot
depend on its relations to any object external to a. Thus, a could be white
even if, say, nothing else existed. We can imagine Armstrong appealing to a
principle of isolation:'*

(It) For any possible object x, there is a possible world w containing just a
duplicate of x and its parts

13See note 11 for a caveat about the intrinsicality of whiteness. I thank Phillip Bricker for
his help in interpreting Armstrong’s justification of premise (1) in terms of recombination
principles.

14There is parallel but weaker defense of (1) in terms of recombination principles. Rather
than considering principles that generate worlds in which whiteness does not exist, we could
consider principles that generate worlds containing duplicates of 4 that do not bear the
instantiation relation to whiteness. The discussion of this approach would parallel that in
the text.
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The object guaranteed by (I1) would be white, being a duplicate of 4, but the
form (universal) Whiteness would not exist at that world, since according to
TU, universals are not parts of their instances.

However, the defender of TU should feel no compunction over rejecting
(I1). It is at the heart of TU to admit necessary connections between an object
having a certain nature and it standing in certain relations to external enti-
ties. (Indeed, on some versions of TU universals enjoy necessary existence,
and thus we would have an immediate violation of (I1).!%) In place of (I1),
a more moderate version may be offered. Let “IP(x)” denote x’s intrinsic
profile, where x is any object (see sections 4.2.2 and 4.2.3 for information
on intrinsic profiles). For any object x, call the proposition that x has IP(x)
“the nature of x”.

(I2) For any possible object x, there is a possible world @ containing only
i) an object, y, that is a duplicate of x, ii) y’s parts, and iii) any object
whose existence is entailed by the existence and nature of an object
mentioned in i) or ii).'®

(I2) does not entail the existence of a world with a white object but no univer-
sal of whiteness because of clause iii): the existence of whiteness is entailed
by the nature of the white object, according to TU.

I think that it is not ad hoc to accept (I12) rather than (It). When a theory
accepts the fact that, e.g. the whiteness of an object consists in its relation to
an external entity (a property), then it is clear that all recombination prin-
ciples will have to be restricted to take this into account. And this does not
contradict common sense, since our reasoning about recombination begins
by considering rearrangements of particulars, and thus only supports prin-
ciples like (I2), not unrestricted principles like (I1).

Explanation of Resemblance

In this section I want to address an intuition that I think is common to the
last three arguments. In each argument, Armstrong claimed that some fact
could not be explained by TU. In the Duplication argument, the fact was

15\We may have another, independent, challenge to (I1): one who believes in sets will hold
that it is impossible for an object to exist without its unit set existing. Assuming that sets
are never parts of non-sets (Lewis, 1991, p. 7), this will violate (I1).

16(12) is adapted from Paull and Sider (1992).
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that objects can differ intrinsically. In the causal powers argument, the fact
was that the causal powers of an object are in some sense independent of
objects “external” to that object. In the Subtraction argument, the fact was
that the nature of an object is independent of things external to that object.

In each case, I argued that TU can account for these facts—through the
distinctions that are the subject of the dissertation. Thus, in the case of the
duplication argument, I argued that the TU-ist can say that ball 4 is not a
duplicate of ball 5 because a has an intrinsic property that b lacks.

However, in each of these cases, we can imagine Armstrong responding
as follows.

In name, you can account for these facts. But your explanation
of the facts is inferior because your universals are transcendent.
You say that ball z has an intrinsic property that ball 4 lacks. But
this property is not iz ball 2, on your view, whereas the property
is in ball 2 on my view. My account is the more satisfying one.

I imagine Armstrong replying in similar fashion to my responses to the other
arguments.

The response I imagine Armstrong making, then, concedes that TU has
some way of accounting for the facts in question. But it holds that the ac-
count IU gives of these facts is superior to that of TU.

I will focus on the question of whether IU gives a superior account of
what it is for objects to differ intrinsically. Let us remember the two separate
components of the notion of immanence:

(P) universals are parts of their instances
and
(L) universals share spatiotemporal locations with their instances

I think we can see that (P) does not give immanent universals an edge over
transcendent universals. Let us return to the hybrid theory HTU. Suppose
that (P) represents a superiority of immanence over transcendence in the
explanation of intrinsic difference. Since (P) is true on HTU, it would seem
that this theory can also claim an explanatory advantage over TU. But surely
HTU can claim no explanatory advantage over TU, for these theories do not
differ metaphysically in the least.
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To say that a universal is part of an instance is just to say that the instance
encompasses the universal. This can be true if the universal “reaches into”
the instance, as immanent universals do, but it can also be true if the instance
“reaches out” to the universal. Surely, switching to the latter description
gives us no edge in the explanation of intrinsic difference. But then (P) cannot
represent any explanatory advantage, for (P) is accepted by HTU but rejected
by TU.

If IU is superior in explaining intrinsic difference, then it must be because
of (L). It is because immanent universal are iz their instances, in a spatiotem-
poral sense, that they give a better account of intrinsic difference. Indeed,
when I form a picture of immanent universals being wholly present in their
instances, and this picture seems, offhand, to provide a superior account of
intrinsic difference, I think what convinces me is the spatiotemporal coinci-
dence between the universals and the instances in the picture.

However, I think we can form an argument that shows that (L) does not
in fact represent explanatory superiority for immanent universals. Consider
objects that exist outside of space. Disembodied souls might be examples.
I suppose such things are possible. And surely two such objects could have
identical total temporal locations. For such a pair of objects, the relation
of duplication could presumably hold, but could also fail to hold. But these
facts could not be explained by appeal to spatiotemporal coincidence be-
tween universals and instances, for such a pair would have identical spa-
tiotemporal locations.

Consider a possible world w containing three disembodied souls: Moe,
Larry, and Curly. Let us suppose that all three come into existence at exactly
the same moment, and also go out of existence at exactly the same moment.
Furthermore, suppose that Moe and Larry are duplicates, whereas Curly is
not a duplicate of either. Let us see if a defender of IU is in a better position
to explain these facts than a defender of TU. I think he is not. He can say
that Moe and Larry instantiate various universals that Curly does not, but
the defender of TU can say this as well. It is true that he can say that these
universals are parts of Moe and Larry, whereas the defender of TU cannot
say this. But I have already argued that this is no explanatory help. Finally,
the IU-ist can not say that there are universals sharing spatiotemporal lo-
cation with Moe and Larry, but not with Curly. All three have exactly the
same total spatiotemporal location, since all three have the same temporal
location and none of the three is located in space. Thus, any universal shar-
ing spatiotemporal location with Moe and Larry also shares spatiotemporal
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location with Curly.

It may be denied that entities that lack spatial location are possible. But
this seems bold.!”

I think this shows that (L) gives immanent universals no explanatory ad-
vantage over transcendent universals. If (L) did represent explanatory ad-
vantage, then this would presumably be so of necessity. But I have presented
a possible case in which IU does not have any explanatory advantage.

If immanent universals have no advantage in explaining facts of intrinsic
difference, then why did they seem explanatorily superior?. In particular,
why did (L) seem to give explanatory superiority?

Consider a transparent glass globe. Now imagine putting a bright light
inside the globe. The light shines through. Putting the light i1 the globe
causes the globe to take on a property of the light—luminescence. If the
light were not in, spatiotemporally in, the globe, the globe would not be lit.
[ often imagine immanent universals this way—as lights that illuminate their
instances from inside. Or I imagine them like the caloric fluid of 18th century
physicists. These physicists thought that heat was a fluid that permeated hot
things, and flowed from hot things to cold things. I imagine an immanent
universal as a sort of fluid that permeates its instance causing it to have a
certain nature. Were the fluid not in the instance, iz in a spatiotemporal
sense, the instance wouldn’t be affected. Perhaps our intuition that immanent
universals give a superior explanation of intrinsic difference derives from
taking some picture like this too seriously.

The Argument from Causal Impotence
Finally, we have the following argument:!®

A spatio-temporal realm of particulars certainly exists (it includes our
bodies.) Whether anything else exists is controversial. If any entities
outside this realm are postulated, but it is stipulated further that they
have no manner of causal action upon the particulars in this realm, then
there is no compelling reason to postulate them. Occam’s razor then
enjoins us not to postulate them.

This argument does not merely apply to transcendent universals, but I will
only consider this application of the argument. I construe the argument as

17 Armstrong, for example, accepts the possibility of such entities (19784, p. T19).
18 Armstrong (19784, p. 130). In fact, all of chapter 12 is relevant.
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follows:
Argument from causal impotence

(1) We have no reason to postulate causally inert entities
(2) Transcendent universals are causally inert entities

(3) Therefore, we have no reason to postulate transcendent uni-
versals

Armstrong applies Occam’s razor to (3) to conclude that we should not pos-
tulate transcendent universals, but (3) seems to me to be bad enough. Premise
(1) is intended to be a plausible principle of epistemology. Armstrong argues
for premise (2) at length. His reasons are complex and controversial, but
they need not concern us.!” What I have to say will sidestep the issues he
raises.

The argument from causal impotence is not a direct objection to TU. It
does not show TU to be incompatible with any commonly accepted princi-
ple, nor does it reveal any internal inconsistency in TU. The conclusion of
the argument is not that TU is false. Still, I take it that the TU-ist would
feel rather uncomfortable accepting the conclusion. The argument must be
answered.

The argument from causal impotence is a familiar argument against pos-
tulating “abstract” entities of all kinds. An equally familiar response is that
the theoretical benefits of postulating causally inert entities overrides any
presumption against them. A common analogy: we can best understand the
truth of mathematics by postulating a realm of sets (Putnam, 1971, especially
chapters 5, 7, and 8). As it is legitimate to postulate sets to make sense of
mathematics, so (the response goes) it is legitimate to postulate propositions,
properties, transcendent universals, possible worlds, etc. to make sense of

9One argument is this. If a thing enters into causal relations, then it must change. Tran-
scendent universals cannot change, so they cannot enter into causal relations (19784, p.
128). If sound, this argument would seem to show that immanent universals cannot enter
into causal relations either! For aren’t immanent universals unchanging?

A second argument seems to be this. Traditionally, the notion of a God, or a Cartesian
soul, acting on Nature has been problematical. If so, then the notion of transcendent uni-
versals entering into causal relations must be more problematical (19784, p. 129-130). I do
not find this argument very convincing. Moreover, both arguments depend on the concept
of a non-event acting on another. See below.
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various other data (Armstrong 1978a, pp. 128-132, 19894, pp. 7-13; Lewis
1986¢, pp. 3—5, 1991, pp. 57—59). Abstract objects are postulated for their
non-causal explanatory value.

I have nothing new to add to this part of the debate. My only interest
is in formulating a clear version of the argument that is not subject to other
difficulties. Given such a version, I suppose I throw my lot in with those
who appeal to the precedent of postulating sets. But first we must find such
a version.

We must ask what it is for an entity to be causally inert. An intuitive
picture of the opposite of causal inertness, causal potency, springs to mind.
A billiard ball is a prime example of a causally potent object. Unlike num-
bers, transcendent forms, etc., billiard balls are capable of causing things
(typically, movements of other billiard balls). We might think, then, that an
object is causally inert iff it is incapable of entering into causal relations.

However, philosophers often hold that causal relations hold fundamen-
tally between events. If a billiard ball’s striking another billiard ball causes
the other billiard ball to move, we might say that “the billiard ball caused the
motion”. But surely it was the event of the billiard ball’s striking the other
ball that did the causing.

It is true that we sometimes speak, for example, of a billiard ball causing
something. We might call this “common sense” causation. But just as par-
ticulars enter into common sense causal relations, so do universals. I might
say that heat caused my rash, that greed causes much of the suffering in the
world, or that negative charge sometimes causes electromagnetic repulsion.
So if common sense causation were the relevant sort of causation, then uni-
versals would turn out to be causally potent, and premise (2) of the argument
would be false. Let us then consider only causal relations that hold between
events.

We need a way to talk about events. For the moment, let’s follow Jaegwon
Kim in our talk about events. To an event x’s having P, there corresponds
an ordered pair (x,P)—x an object, P a property (Kim, 1973, pp. 222-
226). To an event x and y’s standing in R, there is likewise an associated
pair: {(x,y),R). Events, according to Kim, have “constitutive objects” and
“constitutive attributes”. The constitutive attribute of the first event is P;
its constitutive object is x. The constitutive objects of the second event are
x and y; its constitutive attribute is R. (Kim would include a third entity:
the constitutive time —the time of the event’s occurrence. Because of my
assumption of temporally bound individuals, this is unnecessary). Let us
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call both the constitutive property and the constitutive objects of an event
its constituents.

If only events stand in causal relations, then we cannot say that an ob-
ject is causally inert iff it is incapable of standing in causal relations. On this
definition, billiard balls would turn out causally inert! For myself, I feel com-
pelled to postulate the existence of billiard balls, so let us instead consider
the following definition:

(CI) x is causally inert =4 It would be impossible for there to be an event
E that that “involves” x and enters into a causal relation with some
other event

This leaves us the problem of saying what it is for a event to “involve” an
object.
It is natural to say that:

(I1) event E involves x =4 x is a constituent of £

This definition has a result we want: that billiard balls are not causally inert.
For suppose that event E = billiard ball a’s striking billiard ball b causes
the event of billiard ball b’s moving. Billiard ball « is involved in E, for a
is a constituent object of E. Moreover, E causes something, and therefore
billiard ball 2 is not causally inert. Surely, such a scenario is possible for
any billiard ball. Thus, billiard balls are not causally inert, given the present
definitions.

However, the argument is unsound, given this interpretation. Suppose,
for example, that U is a universal and that a is a particular. Let event E be
the event of a’s having U. We may further suppose that E causes some other
event. U is the constituent attribute of E. Thus, E involves U, and hence by
(CI), U is not causally inert. Thus, premise (2) in the argument is false.

(It) allows that when an event a’s having U causes another event b’s
having V , in addition to the particulars 2 and b getting “credit” for a causal
interaction, the universals U and V' do as well. This might be thought to
be improper. When a billiard ball’s motion causes another billiard ball to
move, it might be argued that we think of the ball, rather than its properties,
as doing the causing. Thus, it might be argued that only the constitutive
objects of events are causally potent in virtue of causal interactions, not the
constitutive attributes.

To implement this intuition, we might revise our definition of ‘involves’
to read:



CHAPTER 6. PROPERTIES, UNIVERSALS, AND NATURALNESS 126

(I2) event E involves x =4 x is a constituent object of E

On this definition, event E in the previous example would not involve U.
Provided that universals are never constituent objects of events, events would
never involve universals, and hence by (CI) all universals would be causally
inert. (I will indeed assume for the sake of argument that universals are never
constituent objects of events, although this might be legitimately challenged.)
So premise (2) of the argument would be true.

However, this version of the argument from causal impotence is uncon-
vincing. It has the feel of defining one’s way to a desired conclusion. (I2)
definitionally prohibits universals from being involved in events; therefore,
(CI) definitionally makes universals turn out causally “inert”.?° This way
of talking is fine, provided we are clear that we are considering a sense of
‘causally inert’ such that it is definitional that universals are causally inert.
But now consider what premise (1) of the argument says: that we have no
reason to postulate causally inert objects. Since the conclusion of the ar-
gument is that we have no reason to postulate transcendent universals, the
argument begs the question. It includes a premise to the effect that we have
no reason to postulate a certain kind K of entity, where it is true by defini-
tion that universals are not of kind K. The defender of universals will simply
reject line (1) of the argument.

We need another definition of ‘involves’. Let us shift to an alternate con-
ception of events: as regions of spacetime.?! This view of events gives us a

neat definition of ‘involves’:%2

(I3) event E involves x =4 x is (wholly) located in E

Thus, the event of a particular billiard striking another would involve (the
time slices of) the billiard balls.

On this definition, we get our desired result: transcendent universals are
not involved in any events. Moreover, we get another desired result: im-
manent universals can be involved in events. This latter result is desirable

20T assume here that universals are essentially universals.

21See, for example, Lemmon (1967, pp. 98-99), and Lewis (1986b, note 4) for more
references on this conception of events. Points analogous to those I make in the text would
apply to Lewis’s theory of events as properties of regions of spacetime.

22Phillip Bricker suggested defining ‘involves’ in terms of spatiotemporal location.
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because Armstrong’s argument is intended to apply to transcendent univer-
sals but not to his own theory. This last version of the argument, then, may
be close to Armstrong’s intention.

But I have a nagging doubt even about this final version of the argument.
The argument seems to unfairly stack the deck against TU by its definition
of ‘involves’. Why not define the term as follows?:

(I4) event E involves x =y x is wholly located in E or x is instantiated by
something wholly located in E.

In a clear sense, the properties of objects in a region of spacetime are involved
in that region: they are instantiated there! Again, if an event, construed
as a region of spacetime, causes something, it seems that the properties of
the objects contained in that region are no less involved than the objects
themselves. After all, the causal powers of such an event depend on the
properties instantiated therein.

Thus, the argument from causal impotence that is based on (I3) seems
faintly question-begging—I see no reason to accept (I3) over (I4), other than
a prejudice against transcendent universals. We seem to have gone round
and round in a vain search for a non question-begging version of the ar-
gument from causal impotence, and I have a diagnosis of this fact. The
basic intuition behind the argument is that we have no reason to postulate
non-spatiotemporal entities—the bit about causal impotence is an irrelevant
detour.?> Why not be forthright about this?:

Argument from Spatiotemporal non-Location

(1) We have no reason to postulate spatio-temporally unlocated
entities

(2) Transcendent universals are spatio-temporally unlocated

(3) Therefore, we have no reason to postulate transcendent uni-
versals

Quite plainly, the discussion of this argument can focus directly on premise
(1). As I have mentioned, I have nothing new to add to this discussion. I
stand with those who appeal to the precedent of mathematics, and hold that
sometimes it is correct to postulate non-spatiotemporal entities.

23] offer this diagnosis only in the present case of the argument applied to all transcendent
universals. The notion of causal impotence may be important when the argument is offered
with respect to possible worlds, numbers, and even perhaps uninstantiated properties.
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6.4 Conclusion

The proposal to use universals to analyze naturalness is an attractive one, but
it seems inferior in power to primitive naturalness since universals cannot
be used to analyze the more natural than relation. My preferred view is
abundant TU—an abundant conception of transcendent universals—plus a
primitive more natural than relation. 1 argued that Armstrong’s arguments
against transcendent universals fail, and so provide no barrier to accepting
this view.



Chapter 7

Dunn on Intrinsicality

In a recent paper Michael Dunn has criticized David Lewis’s theory of in-
trinsicality and in its place put his own theory based on Relevance logic.
Since I have accepted Lewis’s analysis of intrinsicality in terms of duplica-
tion, Dunn’s criticisms of Lewis are criticisms of me. I will argue that Dunn’s
objections are mistaken and that his own theory is uninteresting. Finally, I
want to examine Dunn’s contention that two traditional characterizations of
intrinsicality come apart.

7.1 Dunn’s Criticisms of Lewis

7.1.1 Dunn’s Formulation of Lewis’s View

As we have seen, Lewis defines ‘intrinsic’ as follows:

(D1) Property P is intrinsic iff for any possible objects x and y, if x and y
are duplicates then x has P iff y has P

But Dunn construes Lewis’s analysis of intrinsicality differently. Let ¢x be
any formula with free occurrences of at most one variable x. Dunn interprets
Lewis as claiming that ¢x is a formula of a kind to determine an intrinsic
property iff the following statement is true (Dunn, 1990, p. 184):

(IPD*) ¢a—(x ~a—¢px) (Indiscernibility of Perfect Duplicates)

where ‘a’ stands for ‘is a perfect duplicate of’, 2 is a name, and ¢a is the
result of substituting the name a for all free occurrences of x in ¢x. I discuss

129
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below how ‘=’ is to be interpreted. The variable x is to be interpreted as
implicitly universally quantified, whereas the name a, being a name, denotes
a particular individual. Thus, (IPD*) seems awkward, since presumably the
intent is that ¢x is of a kind to determine an intrinsic property if (IPD*) holds
regardless of what 4 denotes.! Thus, I will reinterpret Dunn’s construal of
Lewis as follows: formula ¢x is of a kind to determine an intrinsic property

iff
(IPD) VxVy[dy—(x xy—¢x)]

is true, where ¢y is the result of substituting y for all free occurrences of
x in ¢x. It is clear that Dunn does not intend the quantifiers here to be
possibilist.?

Dunn construes Lewis as offering an account of what it is for a formula
to be “of a kind to determine intrinsic properties”. But Lewis’s account is
of intrinsic properties. How to move from the former to the latter? Say that
property P is determined by ¢x iff P is the property denoted by the phrase:
"being an x such that ¢x'. We may suppose that Dunn is construing Lewis
as follows: property P is intrinsic iff every formula ¢x that determines P is
of a kind to determine intrinsic properties. This raises a host of questions
(e.g. what about properties for which we have no predicates?), but let us set
them aside—what I have to say will not depend on this.

So, Dunn interprets Lewis’s account of intrinsicality via an account of
what it is for a formula to be of a kind to determine intrinsic properties,
which in turn is analyzed using (IPD). We now turn to the interpretation
of the connective ‘=’ in (IPD). Dunn says that he engages in some creative
exegesis, and interprets ‘—’ in various ways. After raising objections to these
interpretations, he finally interprets it in the sense of relevance logic. Let us
look at these allegedly unacceptable possibilities for ‘—’.

Dunn says (1990, pp. 184-5):

...it seems that if the “arrow” in (IPD) is the material conditional, then
the definition allows that Socrates being wise is an intrinsic property of
Reagan...Even if one employs strict implication, Socrates being wise or
not wise ends up as an intrinsic property of Reagan.

1See Dunn (1987, p. 361), formula (7V). This is Dunn’s analog of Lewis’s definition.
Why he does not formulate Lewis’s theory in a parallel fashion, I do not know.
2His Socrates example that I consider below makes this clear.
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Let us examine Dunn’s points. Dunn asks us to suppose that “the arrow”
in (IPD) is a material conditional. Since there are two arrows, we may take
him to be treating each arrow as a material conditional. Let ‘F’ express
the property being wise, and let ‘a’ denote Socrates. Finally, let ¢x = ‘Fa’.
Notice that this formula has no free occurrences of x, and hence ¢v = ‘Fa’
for any variable v. This formula corresponds to the property being such
that Socrates is wise. Clearly, this is not an intrinsic property. But under the
present proposal, this property turns out intrinsic, for the sentence:

(1) VxVy[FaD (x~y D Fa)]

(where the ¢ O’ is understood as expressing material implication) is a theo-
rem of predicate logic. We should join Dunn in rejecting this definition of
‘intrinsic’.

Next Dunn considers strict implication, or entailment. Again, I suppose
he means to interpret each arrow as a strict conditional. That is, (IPD) is to
be interpreted as:?

(IPD') YxV¥y[py = (x xy = ¢x)]

where "o = 7 is definitionally equivalent to "O(a D ). First, let us note
that (IPD’) solves the problem above—that being such that Socrates is wise
turned out intrinsic. Only if the following sentence is true does the present
interpretation imply that being such that Socrates is wise is intrinsic:

(2) VxVy[Fa= (x~y = Fa)]

Since (2) is false, we do not get this damaging implication. Let x = me, and
let y = my brother Mike. Presumably, there is a possible world w in which
Socrates is wise (the actual world, for example), and another possible world
w’ in which i) Mike and I are perfect duplicates, but ii) Socrates is not wise.
(Here I slip into talking as if Mike and I ourselves inhabit other possible
worlds.) Assuming S5 modal logic, (2) is thereby falsified.

3Note: we must recall an issue from chapter 2. Here are using a language with quan-
tification across the modal operator O. Given the usual possible worlds understanding of
the meaning of O, this means that we must make sense of the notion of an object x having
property P in a world in which x does not exist (since we are assuming the thesis of world-
bound individuals). As I mentioned in chapter 2, I understand this in terms of counterpart
theory: to say that x has P at w is to say that x has a counterpart at w that has P.
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But (IPD’) is utterly implausible for reasons other than Dunn considers.
According to (IPD’), almost 70 properties will turn out intrinsic. For exam-
ple, the property roundness is intrinsic, on the present proposal, only if the
following sentence is true (where the predicate ‘R’ expresses roundness):

(3) VxVy[Ry = (x &y = Rx)]

Unfortunately, (3) is false. Let y be a certain actual round tennis ball, and x
be another actual tennis ball. Suppose that in world w, while neither y nor x
is round, x and y are perfect duplicates. Again assuming S5 modal logic, (3) is
false. Clearly, we could repeat this procedure for most properties commonly
thought to be intrinsic.

This construal of Lewis’s theory is a clear mistake—Lewis’s own defini-
tion, (D 1), has no defect of this kind. Moreover, there is no way to acceptably
weaken (IPD’). The following two attempts seem to be the only possibilities.
We could weaken the first or the second ‘=’ to a ‘D’

(IPD) Yx¥y[¢hy = (x %y D $x)]
(IPDY) VxVy[dy D (x~y = ¢x)]

The problem with (IPD!) is the same as the problem with taking each con-
ditional in (IPD) to be materlal—bemg such that Socrates is wise comes out
intrinsic. For the instance of (IPD’) in this case is:

VxVy[Fa= (x~y D Fa)]
that is,
VxVyO[FaD(x~y D Fa)]

which is a theorem of modal predicate logic. The problem with (IPDy ) is the
same as the problem with (IPD’)—almost no properties turn out intrinsic.
Consider, for example, the instance of (IPDL) when we let ¢y be ‘Ry’, with
‘R’ interpreted as meaning “is round”:

VxVy[Ry D (x &~y = Rx)]
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This sentence turns out false for essentially the same reasons that (3) turned
out false above. Even if y is in fact round, x’s being a duplicate of y does not
entail that x is round, since x could be a duplicate of y in a world in which
y is not round.

I conclude, then, that Dunn’s interpretation of Lewis along the lines of
(IPD) using strict conditionals is a mistake—all possibilities for what Dunn
could have had in mind are in trouble for reasons that Dunn never consid-
ers. What is the source of this mistake? Dunn obtains his interpretation, the
schematic (IPD), from Lewis’s words “if something has an intrinsic property,
then so does any perfect duplicate of that thing” in Lewis’s paper “Extrin-
sic Properties”.* In that paper, Lewis is not clear that the quantifiers are
possibilist; this seems to be the reason for the misunderstanding.

Fortunately, Dunn’s major objections do not depend on his mistaken for-
mulation of Lewis’s view. The objections all apply equally well to (D1),
which is what I take to be Lewis’s actual theory. Let us then think of the
objections as directed at (D1).

7.1.2 Dunn’s First Objection

Let us return to the passage quoted above. Dunn says: “Even if one employs
strict implication, [being such that Socrates is wise or not wise| ends up as
an intrinsic property of Reagan” (1990, p. 185).

In general, if N is a necessary truth, then being such that N will be an
intrinsic property, according to (D1). One might object to Dunn’s example
on the grounds that ‘Socrates is wise or Socrates is not wise’ does not express
a necessary truth because of the possibility of Socrates failing to exist, so let
us substitute the property being such that 2+ 2 =4. On Lewis’s view, this is
an intrinsic property.

There are two other related consequences that we might reasonably ex-
pect Dunn to find objectionable. First, on Lewis’s theory, all impossible prop-
erties are intrinsic. Of course, no impossible property is an intrinsic property
of anything, since no object can have an impossible property. Still, impossi-
ble properties can never differ between perfect duplicates, so they turn out
intrinsic according to (D).

Second, if P and Q are necessarily coextensive properties, then Lewis’s

“Dunn quotes this on p. 184 of Dunn (1990); the quotation is from Lewis (19834, p.
197).
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view has the consequence that P is intrinsic iff Q is intrinsic. But, one might
think, this is implausible: consider P = being green, and Q = being green
and being such that there is no largest prime number. Let us summarize
these consequences thus:

(L) Every necessary or impossible property is intrinsic, and if P and Q
are necessarily coextensive properties, then either both or neither are
intrinsic.

I simply do not find (L) objectionable, at least for the notion of intrinsicality
with which I am concerned. I grant that there may be other notions of in-
trinsicality, and maybe (L) would be objectionable for those notions. But I
do not grant that there is only one single notion of intrinsicality that we all
have before our minds, which is such that (L) is false of it.

The way I see it, ‘intrinsic’ is a term of art. There are some non-negotiable
constraints on how any notion deserving the name “intrinsic” must behave.
For example, on any construal of intrinsicality, relational properties like be-
ing within ten feet of a perfect sphere should not turn out intrinsic. But
I don’t think that these non-negotiable constraints say anything about (L),
one way or another. (L) is negotiable.

A good distinction to mark is that between those properties that can never
differ between perfect duplicates, and those that can. This distinction de-
serves to be called a distinction between intrinsic and extrinsic properties.
That (L) turns out true on this distinction seems to me to be of little im-
port. What is more important is whether this distinction can do philosoph-
ical work. I think it can, and what is more, I don’t think that (L) impedes
this work in the least. So, I regard (L) as a “throwaway” consequence of the
theory.

7.1.3 Dunn’s Second Objection

After dismissing the interpretation of (IPD) as involving a strict conditional,
Dunn suggests interpreting the arrows in (IPD) as being those of relevant
implication. This blocks both of the problem cases from Dunn that we dis-
cussed: neither being such that Socrates is wise nor being such that 2+ 2 =4
turn out intrinsic on this view. This is because of special features of relevance
logic that Dunn discusses informally as follows (1990, pp. 180-181):



CHAPTER 7. DUNN ON INTRINSICALITY 135

First, the antecedent of a relevant implication is supposed to be a really
sufficient condition; it, all by itself, is supposed to be sufficient for the
consequent. There should not be the slightest hint of background or
ceteris paribus conditions for a true relevant conditional, unlike the
case with the Lewis-Stalnaker analysis of the so-called “counterfactual
conditional”. There should be no suppression of “premisses” merely
because they are true...

Second, the consequent of a relevant implication is supposed to depend
on the antecedent in a somewhat technical sense, but one that intuitively
means that the antecedent can be used in deriving the consequent.

But Dunn has an objection even for his final construal of Lewis’s view ((IPD)
with the arrows construed as relevant conditionals). Let 4 be some actual
black marble. According to Dunn, the property of being a perfect duplicate
of b turns out to be an intrinsic property, on his final construal of Lewis’s
view. For this property corresponds to formula ‘x ~ 4°, and the following
formula is derivable in relevance logic from the uncontroversial assumption
that duplication is an equivalence relation:

Dunn finds this consequence objectionable. He says that the answer to the
question of whether a given object a4 has this property “Clearly...does not
depend on 4 alone, but equally depends on 4 and its intrinsic properties.”
(1990, p. 185).

This argument appears to apply equally well to (D1). The property being
a perfect duplicate of b can never differ between perfect duplicates, for if a
and c are duplicates of b, then they must be duplicates of each other (again,
we use the fact that duplication is an equivalence relation). So I will discuss
the argument as an argument against what really is Lewis’s theory: (D).
The argument seems to be:

i) If Lewis’s theory is true, being a perfect duplicate of b is an intrinsic
property

ii) being a perfect duplicate of b is not an intrinsic property

iii) therefore, Lewis’s theory is not true
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Fortunately, defenders of (D1) have nothing to fear from the argument, for
the argument equivocates. The ambiguous phrase is ‘being a perfect dupli-
cate of b’. Recall that I assume the thesis of worldbound individuals, so
b exists in only one possible world. Here are two possible properties this
phrase could denote:

P,: the property had by an object x iff x and the counterpart of b in x’s
world are duplicates

P,: the property had by an object x iff x and & itself, the object in the
actual world, are duplicates

To know whether an object in world w has P;, I need to compare it to the
counterpart of b at w. To know whether an object at some world has P,, we
should compare it to b itself (back in the actual world).

It might be thought that it is implausible that P, is the property Dunn had
in mind. But this is not implausible at all. In fact, I think that P, is the most
natural interpretation of the phrase ‘being a perfect duplicate of b’. This
is just another example of the counterpart theorist’s interpretation of de re
modal claims. For example, when we discuss what would have happened if
Dukakis had won the election, we will discuss what would have happened
to Dukakis, despite the fact that it is only a counterpart of the Duke in the
relevant world. If we discuss the property of losing an election to Dukakis,
we will attribute that property to whoever “Dukakis beats” in this possible
world, despite the fact that it isn’t the Duke himself that does the beating.

In everyday English, we do not mention the counterparts of Dukakis.
Rather, we discuss what happens to Dukakis himself in counterfactual situ-
ations. We say: Dukakis might have won. In this counterfactual situation,
Dukakis did win. The counterpart theorist does not deny the truth of these
claims, but he does give an analysis of them on which their truth is consistent
with Dukakis himself being present in only one world. This analysis is not
given in English; it is in a language that, we might say, is more literal. In this
language, we mention Dukakis’s counterparts. In this language, it is false
to say that Dukakis himself wins in other possible worlds—rather, only his
counterparts do. Let’s call this language the “possibilist” language.

Whether ‘being a duplicate of b’ refers to P, or P, depends on whether
this phrase is taken as a phrase of English, or as a phrase in the possibilist
language. If we take it as a phrase of English, then it refers to P, just as
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“losing an election to Dukakis” refers to a property had by people beaten
by counterparts of Dukakis. On the other hand, if it is interpreted as a phrase
of the possibilist language, it denotes P,. Let’s consider how the argument
fares on each reading.

If the phrase denotes P;, premise i) is false. Object b, recall, is a black
marble in the actual world. Consider a world w that contains a marble, c,
that is a duplicate of b, and also 4, the counterpart of b at w. Suppose that
b’ is white. First note that 5 has P, for b is a duplicate and counterpart of
itself.’ But ¢ does not have P,, for b’s counterpart at w, b’, is white whereas
¢ is black. Thus, P, differs between duplicates (4 and ¢) and hence is not
intrinsic according to (D).

On the other hand, if ‘being a duplicate of b’ denotes P,, then premise
i) seems true. Duplication is symmetric and transitive, so if 2 and ¢ are
duplicates of b, then they are duplicates of each other. But premise ii) can
now be rejected.

Let P be the conjunction of all of 4’s intrinsic properties. P is an intrinsic
property (see section 4.2.3, principle A3). I will show that P is necessarily
coextensive to P,; (L) then implies that P, is intrinsic. So, any objection to
this reasoning would need to be an objection to (L), and we have already
considered such objections in the last section.

The argument here employs principles about intrinsic profiles from sec-
tions 4.2.2 and 4.2.3. Suppose Px. P is an intrinsic profile (principle (C3));
since b and x share intrinsic profiles they are duplicates (principle (C2)),
hence P,x. On the other hand, suppose P,x. Thus, x and & are duplicates
(since duplication is an equivalence relation); since P is intrinsic, by (D1),
we have Px. Thus, P and P, are necessarily coextensive.

I think that whatever initial plausibility premise ii) enjoys is the result of
thinking of ‘being a perfect duplicate of b’ as denoting P,, for this reading
implies that there is something special about 5 that makes a given object 4
have the property. Look again at what Dunn says in support of premise ii)

(1990, p. 185):

Consider the question of whether a given object a4 is a “perfect dupli-
cate” of an object 4... Clearly the answer to this question does not de-
pend on a alone, but equally depends on 4 and its intrinsic properties.
[my emphasis]

SWe may stipulate that 5 has no other counterparts in the actual world.
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Dunn does not say what sense of ‘depend’ he intends here, but on a natural
reading, what he says is true only if ‘being a perfect duplicate of b’ denotes P,
rather than P,. This sense is that of counterfactual dependence. For suppose
that 2 and b exist in the actual world, and are duplicates. Object 4 has the
property being a perfect duplicate of b regardless of whether we read this
phrase as denoting P, or P,. But now let us ask whether (5) is true:

(5) if b were to change color but 4 remained unchanged, 2 would no longer
have the property being a perfect duplicate of b

(5) expresses the claim that 4’s having the property being a perfect duplicate
of b counterfactually depends on the color of b. In fact, (5) is true if the
property in question is P, false if the property in question is P,. So if Dunn
has in mind counterfactual dependence when he says ‘depends’, his defense
of premise (ii) rests on reading ‘being a perfect duplicate of b’ as denoting P,.
I grant the truth of premise (ii) on that reading, but on that reading premise
(i) is false, as I have already shown.

Premise ii) sounds true, for we usually speak English, not the possibilist
language. But if we fix on the possibilist language, our intuitions must be dis-
trusted. Consider the property having the same color as b. In the possibilist
language, the property we express is necessarily coextensive to blackness,
since b is in fact black. But of course usually when we use the phrase ‘hav-
ing the same color as b’, we usually have in mind the property had by object
x in world w iff x has the color of the counterpart of b at w. To get the
other reading in English, we would have to say ‘having the same color as b
has in fact’. This phrase expresses in English what ‘having the same color as
b’ expresses in the possibilist language.

7.2 Dunn’s Theory of Intrinsicality

Next I turn to Dunn’s own definition of ‘intrinsic’. Dunn offers two defini-
. 6
tions:

®For the first, see Dunn (1990, p. 180). Dunn says for the left hand side of this definition
“a has ¢ intrinsically” rather than “a has the property determined by ¢ intrinsically”, but
¢ is assigned a formula, not a property. For the second definition see Dunn (1990, p.185)
formula (II). As before, I substitute a universally quantified variable instead of the name ‘@’
that appears in Dunn’s paper.
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a has the property determined by ¢ intrinsically = Vx(x =a—¢x)
& is of a kind to determine relevant properties = VxVy[y—(x =

y—¢x)]

where the “arrows” are those of relevant implication.

Say that property P is a relevant property iff every formula that deter-
mines that property is of a kind to determine relevant properties. Dunn’s
theory of intrinsicality seems to be this: a property is intrinsic iff it is rel-
evant. The notion of a property had intrinsically by an object a is slightly
different, for he allows that, if wisdom is an intrinsic property of Socrates,
then he has wisdom or being such that 2+ 2 = 4 intrinsically, since he has the
latter property purely in virtue of himself. But the latter property would not
be a relevant property (1987, p. 363, 1990, p. 183).

(Notice that we can offer a parallel analysis of the notion of “object-
relative” intrinsicality within the Lewis framework:

(RI) a has P intrinsically =4 every possible object that is a perfect duplicate
of a has P

Notice also that a property is intrinsic simpliciter (as defined by (D1)) iff it
is intrinsic to every possible object that has it.”)

We should be clear that Dunn’s theory is a theory of a different sense of
‘intrinsic’ than the one in which I have been interested in this dissertation.
One of the consequences of Dunn’s analysis that he favors is that haecceities
are intrinsic (Dunn, 1990, p. 186). He defends this position with a quotation
from G.E. Moore (1922, p. 262):

It is obvious that there is a sense in which when two things are exactly
alike, they must be ‘intrinsically different’ and have different intrinsic
properties, merely because they are two...the mere fact that they are
numerically different does in a sense constitute an intrinsic difference
between them, and each will have at least one intrinsic property which
the other has not got - namely that of being identical with itself.

Now, in that paper, Moore is merely pointing out that there is a sense of
‘intrinsic’ according to which the property being identical to Ted is intrinsic.

’In conversation Lynne Rudder Baker has suggested to me that some uses of ‘intrinsic’
in everyday language involve an object-relative notion of intrinsicality.
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[ am perfectly willing to grant that there is such a sense. Perhaps Dunn
has given a correct theory of it. The sense of ‘intrinsic’ in this dissertation,
Lewis’s sense of ‘intrinsic’, might be called a gualitative sense of ‘intrinsic’,
and Dunn’s account fails to capture this sense of ‘intrinsic’. Of course, this is
no objection to Dunn’s theory as a theory of some other sense of ‘intrinsic’.

Whatever sense of ‘intrinsic’ Dunn is interested in, his theory is in the
end of little importance to the project of this dissertation—it is of no help
to the metaphysician who seeks a reductive definition of ‘intrinsic’. His def-
initions are stated for a formal language; the definitions involve formulas of
that language. But we need to choose primitive predicates of that language.
If the primitive predicates are chosen to express extrinsic properties, then
the definition will yield the result that these are relevant properties. So his
definitions are of no help in distinguishing the intrinsic properties unless we
already understand the distinction.

Dunn knows this. Consider the following quotations:

These observations seem finally to constitute a definition of intrinsic
property, at least for an ideal language where complex relational ideas
are not expressed deceptively by monadic predicates (1990, p. 202).

But it is not the business of logic, but rather of metaphysics (or per-
haps of whatever field whose subject matter is being formalized, e.g.,
physics) to determine what formulas “really” determine properties...
logic should tell us only that if certain formulas are postulated to “re-
ally” determine properties, then it follows that certain other formulas
“really” determine properties” (1987, p. 355).

But Lewis is, and I am, of course, engaged in metaphysics, not logic. Why
Dunn offers his theory as a competitor to Lewis’s theory I cannot fathom.

7.3 Two Conceptions of Intrinsicality

There are several traditional ways of distinguishing intrinsic from extrinsic
properties. Dunn claims that these do not always yield mutually consistent
results. In particular, he mentions the “metaphysical” and “syntactical” cri-
teria (1990, p. 178):

Metaphysically, an intrinsic property of an object is a property that
the object has by virtue of itself, depending on no other thing... An-
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other common way of characterizing the intrinsic properties of an ob-
ject (let us call it “the syntactical criterion™) is to say that they are non-
relational.

According to Dunn, these two criteria do not always agree because of the
possibility of “a relation that an item « has to an item b, but which depends
in some sense on only 4 itself...” Dunn’s example is a non-Humean notion
of causality; he quotes Kripke as follows (Dunn, 1990, p. 179):

Indeed to say that 4 by itself is a sufficient cause of 4 is to say that had
the rest of the universe been removed 4 still would have produced 5.

Consider the property causing b. It seems like a relational property, and
hence an extrinsic property according to the syntactical criterion. But, if we
accept this view of causation, we seem to want to say that « has the property
of causing b “purely by virtue of itself”. The metaphysical criteria then
would call this property intrinsic.

I do not accept these traditional conceptions as conceptions of the notion
of intrinsicality of this dissertation. The syntactic criterion seems to me to
count haecceities, properties like being Ted, as intrinsic, since these do not
seem relational (in a sense of ‘relational’ that might be elaborated as ‘involv-
ing relations to distinct things’). The metaphysical criterion is close to the
criterion I accept, but I dislike it for two reasons. The first is that it, too,
seems to make haecceities intrinsic. The second is that some properties are
extrinsic and yet are sometimes “had by an object by virtue of itself...”. Con-
sider a green object that has the property being green or being 10 feet from
some red thing. The related criterion I accept is that an intrinsic property is
one such that whenever it is had by an object, it is had just in virtue of the
qualitative way that object is in itself. But I do want to consider and reject
Dunn’s example, for I think it illustrates a misunderstanding of the notion
of an intrinsic property.

I find the example unconvincing for two reasons. The first is that Dunn
seems to have misunderstood the intent of the metaphysical criterion. When
we say that an object has an intrinsic property “by virtue of itself”, this is
intended to have strong modal force. Suppose that my father is extremely
dignified. Because of his stern demeanor, he has the property of being re-
spected by me. In a sense, this is in virtue of himself, since he is so dignified.
But of course, it is only because of certain facts about me as well that his dig-
nity inspires my respect. It would be possible for him to remain as dignified
as he in fact is, and yet for me to disrespect him.
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In the case where a4 causes b there is an analogy. The non-Humean will
claim that, in some sense, this occurs purely by virtue of 4’s nature. But she
will presumably not claim that it would be metaphysically impossible for a
to occur without causing & (if she does, then I find that notion of causation
implausible). In rough form, since 2 might have occurred without causing
b, causing b isn’t an intrinsic property.

Of course, this isn’t right. If this were the argument, I would be appealing
to the principle that an accidental property of an object can’t be intrinsic, and
this is clearly false. One of my intrinsic properties is my mass, but I could
have had some other mass. What I mean to argue is that it is possible that
a occur, with the same intrinsic nature as it has in fact, and yet not cause b,
and that this fact implies that causing b isn’t an intrinsic property of 4. That
is, there is a possible world in which (a counterpart of) « is a duplicate of its
actual self but does not cause 4.

Now of course, this looks question begging. For a4 to have the same
“intrinsic nature” as it has in fact is for it to have the same intrinsic properties
as it has in fact. So I seem to be directly asserting as a premise that causing
b isn’t an intrinsic property.

I am. The claim that causing b is intrinsic, as I see it, is so clearly and
basically wrong that arguments against it are bound to beg the question. But
[ am hoping that the way [ am denying it will jar the reader into fixing on the
concept of an intrinsic property. Think about my claim that 2 might been
a perfect duplicate of its actual self, without causing 5. Isn’t that clearly
true? Imagine a world where 4 causes 5. Now remove b. You didn’t have
to change 4 did you?

Perhaps a4 causes & in any world with the same laws as our world—this
may be what is indicated in the Kripke quotation by the counterfactual lo-
cution “...had the rest of the universe been removed « still would have pro-
duced b.” [my emphasis] This may indicate a belief that particular instances
of causation are independent of matters of particular fact, so long as the
causal laws are held constant. Or, perhaps the non-Humean believes that it
is possible for a to cause b even when there are no other objects or laws. But
surely it is not the case that in every metaphysically possible world in which
a occurs and has its actual nature, b occurs as well.

My second objection to Dunn’s example is similar to the first. Surely the
non-Humean would allow that even though 4 in fact causes &, it is not nec-
essary that it cause 4 in particular. Couldn’t 2 have had its actual nature, but
caused some other event instead? Perhaps even a duplicate event. For exam-
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ple, Bob’s swinging his fist caused Rob’s pain. Now imagine a world where
the person Bob hit was not Rob, but someone else. Then, Bob’s swinging his
fist didn’t cause Rob’s pain; it caused, say, Nob’s pain.

In the end, one with a radically non-Humean view of causation can con-
sistently maintain that causing b is intrinsic. But she would be committed
to theses that, I say, are rather unintuitive. In particular, there would be
metaphysically necessary connections between states of affairs like

a’s having such and such an intrinsic nature
and
b’s occurring

So, the radical non-Humean would be committed to severe restrictions on
possibility, for we normally think that such distinct states of affairs are meta-
physically compossible, if not physically compossible. Since I find this im-
plausible, I find Dunn’s example implausible.



Chapter 8

Analysis of the Notions

In this chapter I discuss two related questions. The first is the question of
whether certain attempts to analyze naturalness succeed, and the second is
the question of whether certain attempts to analyze intrinsicality succeed.
My answer in each case is 7o. In chapter 6 I considered and rejected the
proposal that naturalness be analyzed using a sparse theory of universals.
Obviously, it is impossible to review all proposals for analyzing the notions
of intrinsicality, naturalness, and duplication. Still, I hope that the results of
these two chapters, together with my claim that naturalness is an important
and fruitful notion, justify my taking naturalness as a primitive.!

8.1 Can We Define ‘Natural’?

The notion of naturalness that is up for analysis is that characterized in chap-
ter 3 as “Conception 1”. First, let’s focus on the perfectly natural properties
and relations. I characterized these as the “most fundamental properties™.
The general idea underlying the hope that naturalness can be analyzed is
this: once we fix the facts about perfectly natural properties and relations,
we thereby fix all other facts of a certain sort.

Lewis (1986¢, p. 63) discusses attempts to define ‘natural’ in terms of “robust” notions
such as laws of nature and resemblance. His objection is that naturalness should be used to
analyze these robust notions, rather than the other way around. Quinton (1958, pp. 53-58)
discusses what he calls “formalistic” analyses of naturalness—those that do not appeal to
any such robust notions. Since these proposals have already been discussed, I will focus on
proposals of different kinds.

T44
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It must be emphasized that the qualification “of a certain sort” is nec-
essary. The perfectly natural properties and relations do not form a super-
venience base for all properties whatsoever. In section 3.2.1 I showed that
haecceities do not supervene on the set of perfectly natural properties and
relations. Moreover, perhaps there are possible worlds that are alike in their
distribution of perfectly natural properties and relations, but differ with re-
spect to the laws of nature that hold there, with respect to the causal re-
lations that hold there, or with respect to the objective chances of various
events there.? If so, then properties and relations involving laws, causation,
or objective chance will be instantiated differently in the worlds in question,
and so won’t supervene on the perfectly natural properties and relations.

Thus, we have the requirement that all facts of a certain sort supervene on
the perfectly natural properties and relations. What sort of facts? Qualitative
facts. For the kinds of facts just mentioned that fail to supervene on the set
of perfectly natural properties and relations seem non-qualitative.

Suppose we were to succeed in defining ‘natural’ in terms of ‘qualitative’.
This would not be an achievement quite so momentous as that of defining
‘natural’ purely in terms of supervenience and other “quasi-logical” notions.
The notion of a qualitative property or relation seems to be of a piece with
that of naturalness. Still, such a definition would be important. But I will
argue that ‘natural’ cannot be so defined.

The working idea here is that the set N of perfectly natural properties
and relations at any world w forms a supervenience base for the set Q of
qualitative properties at that world—N is a “Q-base” for w.> But not just
any Q-base for w is the set of perfectly natural properties at w. Any set is a
supervenience base for itself. Hence, the following definition:

(N1) Property or relation P is perfectly natural iff it is a member of a Q-base
for some world

would err in making every qualitative property perfectly natural. In fact,
(N1) makes every property and relation perfectly natural since the set of
all properties and relations is a supervenience base for any set of properties
whatsoever.

2See Lewis’s discussion of “Humean Supervenience” in the introduction to Lewis
(1986d).

3In fact, because of the possibility of a “world of endless complexity”, these remarks
need to be complicated, but I will ignore this twist for simplicity. See section 3.2.2. The
argument I give here applies equally well to the more complex versions.
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(N1) makes too many properties natural. We should therefore limit our
attention to certain special Q-bases—the properties in these Q-bases will be
the natural properties. Intuitively, these will be the “non-redundant” Q-
bases. But there are problems in carrying this out.

First, there is a problem with stating an appropriate necessary condition
for perfect naturalness along these lines. The following necessary condition
was suggested in section 3.2.1:

(1) for any world w, the set of perfectly natural properties and relations
at w is a minimal Q-base for w.

Let us consider this extended into a definition:

(N2) Property or relation P is perfectly natural iff it is a member of a minimal
Q-base for some world w.

where a minimal Q-base for w is defined to be a Q-base for w that has no
other Q-base for w as a subset. The difficulty with the necessary condition
for perfect naturalness contained in (N2) involves the “problem of minimal-
ity” I discussed in section 3.2.1. What if one perfectly natural property or
relation can be analyzed in terms of others? Then, there may be a world at
which the set of perfectly natural properties is not a minimal Q-base.

I suggested a solution to a special case of this problem—the problem
of “permutations”—Dby revising the definition of ‘minimal’ to allow that a
relation R and a permutation of R might both be present in a minimal su-
pervenience base. However, it still seems an open possibility that some other
instance of the problem of minimality might falsify (1). To the extent that
this possibility is a genuine possibility, (1) is to be distrusted.

Whether or not the problem of minimality can be solved, I think it is clear
that the sufficient condition laid out by (N2) is unacceptable.?

Let N be the set of perfectly natural properties and relations at some
world w; let A be the set of qualitative properties and relations at w; suppose
that N contains some property P. In section 3.2.1 it was argued that the
negation of a perfectly natural property is not perfectly natural, so ~P ¢ N.
Let N’ be the result of replacing P by ~P in N. (N2) implies that N is a
minimal Q-base for w, and we will show that it then follows that N’ is as
well. (N2) then implies that ~P is perfectly natural, and is therefore refuted.

We first note the following lemma:

“Phillip Bricker made an important suggestion here.
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(*) for any sets A and B and property P, B supervenes on AU {P} iff B
supervenes on AU {~P}

which follows from principle (S5) of section 3.2.1. Now, since A supervenes
on N, by (*) it also supervenes on N’. Moreover, N’ is a minimal super-
venience base for A. For suppose N’ C N’ and A supervenes on N”. If
~P ¢ N” then N” C N, and we contradict the fact that N was a minimal
supervenience base for A. On the other hand, if ~P € N”, then by (*), A
supervenes on (N” — {~P}) U {P}. Since this latter set is a proper subset of
N, we again have a violation of N’s minimality.

It should be noticed that this example refutes a strengthened version of
(N2):

(N3) Property or relation P is perfectly natural iff it is intrinsic and a member
of a minimal Q-base for some world w.

for the property in question, ~P, is intrinsic (~P is intrinsic since P is per-
fectly natural and hence intrinsic—see section 4.2.3 where it is shown that
Boolean combinations of intrinsic properties are intrinsic and that perfectly
natural properties are intrinsic). It should also be noticed that we cannot
block this example by banning “negations” from the minimal Q-bases we
consider, for every property P is the negation of ~P.

So, the definition we have been considering cannot account for the fact
that the negation of a perfectly natural property is not perfectly natural.
The trouble is caused by the fact that the negation of a property is, to put it
colorfully, as good as the property itself as far as supervenience is concerned.
I do not see how any definition of ‘natural’ along the lines we have been
considering can get around this problem. The prospects, then, for defining
‘natural’ in terms of ‘qualitative’ and ‘supervenience’ look dim.

8.2 Can We Define ‘Intrinsic?

A property is intrinsic iff it never differs between any two possible duplicates.
Objects are duplicates iff they share all their intrinsic properties. We have a
circle of interdefinability between ‘intrinsic’ and ‘duplicate’. Given either, we
may define the other (and given naturalness, we may define them both). But
this may seem like defining the obscure in terms of the obscure. Who would
understand ‘duplicate’ if she did not understand ‘intrinsic’? I myself think
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I understand both notions. I also think that the equivalences relating these
concepts increase my understanding of each. But some philosophers have
desired more than mere equivalences relating these two notions. They have
sought reductive definitions of ‘intrinsic’ and ‘duplicate’ in terms of modal
concepts, property exemplification, the part-whole relation, etc.

I believe that all such attempts must fail. But my goal in this section is
more modest. I will review two proposed sets of definitions, one by Jaegwon
Kim and one by Michael Slote. Each proposal will be shown to be flawed. In
Slote’s case [ will discuss extensively the possibilities for revising the analysis;
it will be seen that the prospects are not good.

8.2.1 Preliminaries

In this section I will use both of the languages I mentioned in chapter 2. I will
engage in some use-mention sloppiness in the interest of smooth exposition.

The actualist language is a standard modal language with the ordinary
apparatus of the predicate calculus, plus the modal operators ‘0’ and <.
Quantifiers that range over objects range over objects in “the world of eval-
uation”. For example, “dxFx” is true at a world iff some object is F at that
world. “OVxFx” is true iff it would be possible for every object that would
then be actual to be F; that is, iff there is some possible world such that every
object that exists at that possible world is F. This language has a temporal
existence predicate—“Exist(x,¢)” means that x exists at time ¢.

The possibilist language is my usual language. It contains no modal op-
erators; in their place we have quantifiers that range over possible worlds
(variables: ‘@’, ‘w”, etc.), and quantifiers that range over all possible objects
(variables: ‘x’, “y’, etc.). The sentence “VxFx” says that every object, both
actual and possible, is F.

I will also employ “lambda abstraction”. For example, where ¢ is some
formula with no occurrences of free variables other than ‘x> and ‘z’, the
expression "AxAr¢™ shall be understood as denoting the property had by
possible individual z at time ¢’ iff ¢ is true when z is assigned to ‘x” and ¢’
is assigned to ‘t’.

In this chapter only I will speak of properties of objects at times rather
than the properties had simpliciter by the temporal slices of those objects. I
do this to match the language of the philosophers I discuss. To this end, each
language contains variables that range over times: ‘t’, ‘t”, etc. The sentence
“t > t'” means that time ¢ is after time t’. Where ‘P’ names a property, I
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will take the liberty of using “P(x,)” to mean that object x has property P
at time t; “R(x,y,t)” means that x and y stand in relation R at ¢. I will also
allow quantifiers over places, with corresponding variables ‘p’, ‘p”, etc.

8.2.2 Kim’s Definition

In discussing Kim’s definition we may be brief, since it has already been ad-
equately discussed by David Lewis (1983a). Kim (1982, pp. §9—60) offers a
sequence of definitions building on a suggestion by Chisholm (1976, p. 127).

I follow Kim in using an actualist modal language. We need the concept
of two objects being “wholly distinct”. An object is not wholly distinct from
other objects that it overlaps; neither is it wholly distinct from, say, its unit
set. I will say x and y are wholly distinct at time ¢ (“Dist(x,y,¢)”) iff a) both
are contingent objects and b) x and y have no parts in common at ¢, and c)
neither is such that its existence entails the other’s existence.

Here are the definitions; the first is Chisholm’s; the others are Kim’s:

D1: Gisrooted outside times at which it is had = ;; OVxVt[G(x, t)—3t'(t #
t' NExist(x, t"))]

D2: G is rooted outside the objects that have it=y OVxVt[G(x,t)—3y3¢’
Dist(x,y,t")]

D3: G is internal (i.e. intrinsic) =4 G is neither rooted outside times at
which it is had nor outside the objects that have it

David Lewis, in ‘Extrinsic Properties’, notes that Kim’s analysis is unsuc-
cessful. The property of loneliness, had by x at ¢ iff at ¢, there exists no
contingent object that is wholly distinct from x, satisfies D3. But loneliness
is not intrinsic. Imagine two possible worlds w and @’ containing duplicate
black balls at some time ¢. In @ the ball is entirely isolated, whereas the ball
has plenty of company in @’. Only the first ball is lonely, so loneliness can
differ between perfect duplicates and hence is not intrinsic.

Similarly, many disjunctive properties incorrectly turn out intrinsic ac-
cording to Kim’s definitions. As Lewis notes, the property that is the dis-
junction of loneliness and the property of coexisting with exactly six pigs
(wholly distinct from oneself) also satisfies those definitions.

Let us leave Kim’s definition, and discuss instead some definitions pro-
posed by Michael Slote.
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8.2.3 Slote’s Project

Slote does not directly concern himself with the project of defining either
‘duplicate’ or ‘intrinsic’. But he does attempt to define certain related notions
in chapter 8 of Metaphysics and Essence. 1 shall critically examine these
definitions, as well as the question of whether they can be extended to define
‘duplicate’ and ‘intrinsic’.

Slote’s goal is to define the locution ‘objects x and y are exactly alike at
time ¢, where x and y are understood to be objects in the same possible
world. The definition of this locution employs the concept of an alteration;
this also is analyzed by Slote.

The definitions have an idiosyncratic form, for they do not mention prop-
erties or related entities. I will take the liberty of changing their form to one
more standard. Most of what I say about the definitions I discuss applies
straightforwardly to Slote’s original definitions.

8.2.4 Slote’s Analysis of Alteration

Slote begins with an analysis of what it is for a single object x to be at some
time intrinsically unlike the way it was at some earlier time. This Slote calls
“alteration”. This term is somewhat unfortunate, for on at least one natural
use of this word, a ball that changed from being green at ¢ to being blue and
then back to being green by ¢’ could be said to have “altered” between t and
t’, even if it was exactly similar at ¢ to how it was at ¢’. It should be kept
in mind, therefore, that such a case would not count as alteration in Slote’s
sense. In other terminology, an object x alters in Slote’s sense between ¢ and
t" iff it is not the case that the stage of x at ¢ is a perfect duplicate of the stage
of x at ¢’}

I take it that we have a pre-theoretical grasp of the concept of alteration
against which proposed philosophical analyses may be evaluated; likewise
for the concept of alikeness in the next section. To fix on that notion, I will
sometimes appeal to the familiar notions of intrinsicality and duplication in
my discussion of Slote’s definition. Of course, these notions will not be used
in the definitions. That would be circular.

Slote’s definition runs as follows (1975, p. 138).

ST will take this to entail that x’s passing into or out of existence counts as an alteration
in x.
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" a alters between , and ¢, ' means about the same as "there are an x
identical with a, a t identical with #,, and a ¢’ identical with ¢, such that
there are a y at t and a z at ¢’ that are incompatible and both dependent
on x; y and z are both not temporally bound; for all places p and times
t", x,y,and z can each exist at p and t”” and y and z can exist even
if x never moves; and neither y nor z depends on anything ¢ such that
of necessity if one of y or z exists at some time ¢” and the other at some
other t”” and ¢ exists at both " and t”” then either x or ¢ is somewhere
at t”" where it is not at "

When Slote says that object x is temporally bound, he means that x is either
(a) essentially unceasing, or (b) such that if it exists at some time ¢ then it
essentially exists only at ¢ (1975, p. 101). Object x depends on object y iff
necessarily, if x exists at some time then y exists at that time. Objects are
incompatible iff it would be impossible for them to exist at the same time.

Slote’s idea is that this definition will be satisfied in virtue of the variables
‘y” and ‘2’ being assigned certain states of affairs. Suppose that x undergoes a
genuine change—say a change in color from red to blue. Then the definition
will be satisfied in virtue of the states of affairs x’s being red and x’s being
blue, respectively, being assigned to the variables “y’ and ‘z’. On the other
hand, suppose x merely changes its position without changing any of its
intrinsic properties. Then the assignment of the states of affairs x’s being at
position p, and x’s being in position p, to ‘y’ and ‘z’, respectively, will not
satisfy the definition, nor will any other assignment to ‘y’ and ‘z’. So the
first, but not the second, will count as a genuine case of alteration.

Slote’s definition does not mention states of affairs. This is not because he
does not believe in these entities. Indeed, his intention is that the definition
will be satisfied in virtue of certain states of affairs being assigned to the
variables ‘y” and ‘z’. But he believes that the definition works adequately as
it is—phrased only in terms of modal notions, spatiotemporal notions, and
logical notions. The notion of a state of affairs is not a primitive notion for
Slote.

But it is not part of my project to eliminate states of affairs or related
entities from primitive ideology, so I will develop a more intuitive definition
that is based on Slote’s definition but makes reference to properties. First,
some terminology. I continue to use an actualist modal language. Say that
a relation (property) is existence entailing iff necessarily, if x,...x, stand in
that relation (property) at a time, then x,...x, must all exist at that time.
Properties P and Q are incompatible iff it would be impossible for any object
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to have both P and Q at the same time. Property P is temporally bound iff
OVxVt[P(x,t)—VYt'>t P(x,t)].° I will denote the location of x at time ¢ by
“loc(x,t)”.” T will write “P(x,t, p)” iff loc(x,t) = p and P(x,t). I represent
Slote’s definition thus:

Analysis of Alteration 1

Alter(x,ty,t,) =4 IPIQ such that

a P(x,5,) NQ(x, ;)

b P and Q are existence-entailing® and incompatible and neither is
temporally bound

c VpVe[OP(x,t, p) NOQ(x,t, p)]
d O[AtP(x,t) ATt Q(x,t) A x never moves]

e ~3z0VeVe'([P(x,t) AN Qx,t’) A Exist(z,r) A
Exist(z,t")]—[loc(x, t) # loc(x, t')Vloc(z, t) # loc(z, t')])

As an example of the application of this definition, let us return to the case
where x changes position between times ¢, and ¢, without altering. Let P =
having position p, and let Q = having position p,. Conditions a, b, d, and
e seem satisfied, but ¢ is not. If other assignments to the variables also fail
to satisfy the definition, then it yields the correct result: x does not alter
between ¢, and ¢,.

As stated, however, the definition is inadequate. Suppose that x never
alters throughout its existence, but at ¢, it is moving while at ¢, it is stationary.
Suppose x’s color (all over) is blue. Consider the following assignments:

P = moving or being non-blue

®The second half of Slote’s definition of ‘temporally bound’ can be left out because of
condition c.

’Let us introduce some object that is not a place to be the value of loc(x, t) when x does
not exist at time ¢. Thus, if x exists at ¢ but not at ¢’, then loc(x, ) # loc(x, ).

81 include the assertion that P and Q are existence-entailing to mirror Slote’s assertion
in his definition that y and z depend on x. In Slote’s original definition, the intended values
for y” and ‘z’ are states of affairs involving x.
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Q = being stationary and being blue

As near as I can tell, the conditions above are satisfied, and hence the theory

gives the incorrect result that x alters between ¢, and ¢,.
The difficulty can be fixed by adding condition d’:

d" O[3tP(x,t) NIt Q(x,t) A x moves whenever it exists]

Intuitively, d’ is in the same spirit as d: they each rule out properties that
entail certain states of motion. Condition d’ prohibits Q in my example.
There is another difficulty with this definition. Suppose x remains in place
for its entire life and never changes any of its intrinsic properties. But suppose
at t, there is a red ball (called “A”) ten feet from x, whereas at ¢, there is
nothing ten feet from x. This is the sort of situation for which condition e is
designed: when P = being ten feet from A and Q = not being ten feet from
A, condition e is not satisfied. But now consider the following assignment to

‘P’ and CQ’

P = the property of having something or other within ten feet

Q = the property of having nothing within ten feet

Under this assignment, condition e in the definition is satisfied, for there is
no one object such that, necessarily, if x has P and Q at two times ¢ and ¢/,
and that object exists at t and ¢/, then either x or it must have moved. As
far as I can see, the other clauses in the definition are satisfied as well, and
so the definition again gives the incorrect result that x alters between ¢, and
t,.

Let us then add the following two conditions that are in the spirit of
Kim’s definition (recall that Dist(x, y, ¢) iff x and y are contingent objects that
share no parts at ¢, and are such that neither’s existence entails the other’s
existence):

f O[JtP(x,t) ANt Q(x,t) A~IyI¢ Dist(x,y,t)]
g O[AtP(x,t) NIt Q(x,t)AIyd¢ Dist(x,y,t)]

(It is necessary to add both conditions for reasons analogous to those that
necessitated our adding d’ to supplement d). These conditions will rule out
properties like having something within ten feet. In fact, these conditions
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seem to rule out the cases that the original condition e was intended to rule
out,” so I propose that we drop condition e. Here is the modified analysis.

Analysis of Alteration 2

Alter(x, t,,t,) =4 IPIQ such that

a P(x,ty)) NQ(x,t,)

b P and Q are incompatible and existence-entailing

c VpVi[OP(x,t, p) NOQ(x,t, p)]

d O[JeP(x,t) At Q(x,t) A x never moves]
d" O[FeP(x,t) ATt Q(x, 1) A x moves throughout its existence]
f O[AeP(x,t) At Q(x,1) A ~3y Dist(y, x)]

g <O[AtP(x,t) NIt Q(x,t) ATy Dist(y, x)]

It should be noticed that by adding f and g, we have employed a new primi-
tive: the part-whole relation.

From our discussion of Kim’s definition above, we should notice that d
and d’ do not rule out the property P = either being stationary or moving
with velocity 5 meters per second. However, this causes no problem in the
present context. If Q is to satisfy condition b, it must be incompatible with P,
and hence must entail the property neither being stationary nor moving at 5
meters per second. But then Q will fail condition d. Similarly, the conditions
f and g do not rule out the case where P is the disjunction of loneliness and
coexisting with six pigs. But again, if Q is to satisfy condition b then it must
entail the property neither being lonely nor coexisting with six pigs, and
hence will fail to satisfy condition f. Indeed, a major reason for examining
this definition is that it avoids the problems Lewis presents for Kim.

9The example Slote gives on p. 137 is essentially the example I gave above involving
the properties being ten feet from A and not being ten feet from A. There is another reason
to drop condition e. Let z = any object that cannot exist at two different times. (e.g. an
instantaneous time stage). In this case, the conditional in e has an impossible antecedent,
the statement beginning with ‘0" is true, and the condition is failed, for any properties P

and Q.
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Our new conditions f and g also rule out counterexamples to Slote’s orig-
inal definition that were noticed by Frederick Schmitt (1978, pp. 406—407).
Here is the general form of Schmitt’s counterexamples. Let x and y be ob-
jects, and P’ and Q' be incompatible intrinsic properties. The properties

P = Ax(y is P’) (being such that y is P’)
Q = Ax(y is Q') (being such that y is Q')

seem to satisfy the original definition. So suppose that x never changes any
of its intrinsic properties during its lifetime, but y changes from having P’
to having Q’. This means that x goes from having P to having Q, and the
original analysis counts this as an alteration to x.

The Analysis of Alteration 2 is a significant improvement over Slote’s
original definition. Unfortunately, it is still inadequate. It cannot rule out
cases based on Nelson Goodman’s grue/bleen examples.!® Let ¢, be some
time, and define P and Q as follows:

P = AxAt[(Green(x, ) At < t,)V(Blue(x,t) At > t,)] (Grueness)
Q = Ax Ar[(Blue(x, ) At < 1,)V(Green(x,t) At > t,)] (Bleenness)

Suppose that object x does not alter at all between times ¢ and ¢’ where
t < ty < t'. Further suppose that x is green during this interval. Properties
P and Q fit the definition of alteration, and hence that definition yields the
incorrect result that x alters between ¢ and ¢'.

We can generalize further. Let ¢ be any function from objects and times
to propositions, and F be any intrinsic property. Further suppose that object
x does not alter between times ¢, and ¢, and has F during that period, but
that ¢(x, ) is true while ¢(x,¢,) is false. It seems to me that the following
P and Q will satisfy the Analysis of Alteration 2:

P = AxAt[(F(x,t) N p(x,t) is true)V(~F(x,t) A ¢p(x, t) is false)
Q = AxAt[(~F(x,t) N @(x,t) is true)V(F(x,t) A ¢(x, t) is false)
provided that, for any x and ¢, ¢(x,t) and the proposition that x is F at

t are logically independent, and provided that neither F nor its negation is
essential to x.

"Goodman (1955, p. 74). Phillip Bricker suggested looking at grue/bleen.
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I see no way around this problem, and so I believe that Slote’s analysis
of alteration is a failure. It should be noticed that the property grueness is
also a counterexample to Kim’s definition of ‘intrinsic’ above. A formidable
task for any reductive definition of words like ‘intrinsic’ and ‘duplicate’, or
others of their ilk, is to solve this problem.

8.2.5 Slote’s Analysis of Alikeness

Slote uses his analysis of alteration to analyze the notion of distinct objects
being exactly alike at some given time. In more familiar terminology, x and y
are exactly alike at time ¢ iff x’s stage at ¢ is a perfect duplicate of y’s stage at
t. We found reason to reject Slote’s analysis of alteration, but I will consider
his analysis of alikeness anyway. Perhaps an adequate analysis of alteration
is possible after all. Also, it is interesting to see whether duplication may
be analyzed in terms of alteration, for the concept of alteration could be
taken as a primitive notion. If analyses of duplication and intrinsicality were
then forthcoming, these would not be entirely reductive, since the notion of
alteration seems in the same boat with duplication and intrinsicality. Still,
there may be some merit to taking alteration as our primitive.

A new notion employed in Slote’s definition of ‘alike’ is that of two ob-
jects being “incongruous”. The idea here is a spatial one: left hand/right
hand mirror images are incongruous despite perhaps being otherwise exactly
similar.

His definition is as follows (1975, pp. 142-3):

Ta and b are non-identical mutable unbound entities exactly alike at #,
means about the same as "there are an x identical with 4, a y identical
with b, and a ¢ identical with #, such that x and y are non-identical
mutable unbound entities and there is at ¢ a temporally unbound z
dependent on x and y but not depended on by either x or y; z cannot
exist at all times when either x or y exists if x alters between some two
times and y does not (or vice versa); z can exist at some time, or during
some period, even if both x and y are altering at that time, or during
that period, and even if both x and y are not altering at that time or
during that period; z can exist between some ¢” and ¢” only if for every
two times t”/ and t”” between t’ and t” or identical with ¢’ or ¢”, it
is not the case that x at t”” is (to some degree) unlike x at " but y
at t”” is not (to any degree) unlike y at t”/; z does not depend on any
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temporally unbound immutable entity w that depends on x and y; and
at ¢, x and y are not incongruent or incongruous

The intent is that the definition will be satisfied when ‘z’ is assigned the state
of affairs: x and y’s being exactly alike.

I represent this definition as follows. An object is mutable iff it is possible
that it alters. For any objects z and Z’, let ¢,(z,z’) be the earliest time when
either z or 2’ exists; let t,(z,2’) be the latest time when either z or 2z’ exists.
When we have R(x,y,t”) for every t” between ¢ and ¢’ (inclusive), I will write
“R(x,v,[t,t'])”.

Furthermore, I extend the notion of alteration from the previous section
as follows: when ¢ = ¢/, T interpret “Alter(x,,t’)” as meaning that x is
altering at t. Slote does not define the locution “x is altering at t”. He
alludes to the possibility of such a definition in terms of “Alters(x, t,¢")” and
spatiotemporal terms on p. 141 footnote. 14. One presumably would go
about it thus. x is altering “from the past” at t iff there is some t’ < t such
that for any t” € [¢/,t), Alter(x,t”,¢). The definition of “x is altering at ¢
from the future” is analogous. Presumably, x is altering at ¢ iff x is altering
at ¢t from either the past or the future.
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Analysis of Alikeness 1:1!

Let x and y be non-identical mutable temporally unbound entities.

Alike(x,y,t,) =4 3R such that R is existence entailing and:

a R(x,y,t,)
b YtOR(x,y,1)
¢ YtO[Exist(x,t) A Exist(y, t) A~R(x,y,t)]

d Of{R(x,y, [t,(x,9), t,(x,9)]) =V e Vi (e £ = [Alter(x, £, 1)
Alter(y, t,t")])}

e Odt,t'[R(x,y,[t,t']) A Alter(x, t,t") A Alter(y, t,t")]
f &3, t'[R(x,y,[t,t"]) A~Alter(x, t,¢") A ~Alter(y, t,t)]

g OVeVi'[R(x,y,[t,t']) -V "Vi"e[t,t']{t"#t" —(Alter(x, ", ")
«— Alter(x,t”,t")}]

h The state of affairs R’s holding between x and y does not entail
(include) any “temporally unbound immutable state of affairs”

i x and y are not incongruous at ¢

The idea here is that R will be the relation being exactly similar to.
Condition h is obscure. It is intended to rule out the following case which
I will discuss below:

R = AxAy(x and y are exactly alike except that x has the deter-
minate shade green, and y has the determinate shade red,)

R is ruled out by condition h because the state of affairs x and y’s standing
in R entails the state of affairs x’s having the determinate shade green  and
y’s having the determinate shade red,, which, according to Slote, is a “tem-
porally unbound immutable state of affairs”. It is immutable, presumably,

HClauses a, b, and ¢ are intended to capture Slote’s condition a (p. 139). c is slightly
stronger than what Slote says, however.



CHAPTER 8. ANALYSIS OF THE NOTIONS 159

because there are two “determinate” intrinsic properties, namely, greenness
and redness,, such that it entails that x has the first, while y has the second.
I do not know how to further clarify this notion, and I will not even attempt
to, since, as [ will argue below, condition h should be dropped anyhow.

This definition is somewhat daunting. But we can make some simplifi-
cations. First, g together with the fact that R is existence-entailing entails
d;'2 hence, the latter can be eliminated. Moreover, g is is equivalent to the
simpler g':

g OVeVi'[(t £t AR(x,y,[t,t']))—(Alter(x, t, t")—Alter(y, z,t"))]

So we have:

Analysis of Alikeness 2:
Let x and y be non-identical mutable temporally unbound entities.
Alike(x,y, ty) =4 R such that R is existence-entailing and:

a R(x,y,t,)

b VtOR(x,y,t)

¢ YtO[Exist(x, 1) A Exist(y, t) A~R(x,y,t)]

e O3r,t'[R(x,y,[t,t']) A Alter(x, t,t") A Alter(y, t,t")]

f &3, t'[R(x,y,[t,t']) A~Alter(x, t,t") A ~Alter(y, t,t)]

g OVeVi'[(r £t AR(x,y,[t,t']))—(Alter(x, t, t")e—Alter(y, z,1"))]

h The state of affairs R’s holding between x and y does not entail
(include) any “temporally unbound immutable state of affairs”

i x and y are not incongruous.

12Suppose R(x,y, [;(x,y), t¢(x,)])- Since R is existence-entailing, x and y come into and
go out of existence at the same times. Let ¢ # ¢'. If both ¢ and ¢" are not in [¢;(x, ), t7(x, )]
then clearly neither x nor y alters between ¢ and ¢’. If exactly one of ¢ and ¢’ is in this
interval, then both x and y alter between ¢ and ¢’ (in note 5 it is mentioned that coming into
existence shall be taken to be an alteration). Finally, if z and ¢ are each in [;(x, ), tp(x,)]
then it follows from g that Alter(x, ¢, t') iff Alter(y,t,t’).
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This definition will not do in its present form. Condition i is present to rule
out the case of two perfect mirror images of each other—say a left hand and
a right hand that are exact duplicates except for being mirror images. For let
R = being a perfect mirror image of ; R satisfies all of the conditions before
condition i. In particular, R satisfies condition g’, since any alteration in one
of the hands would need to be accompanied by an alteration in the other, if
they were to continue being perfect mirror images.'?
Similarly, condition h is intended to rule out the case where

R = AxAy(x and y are exactly alike except that x has the deter-
minate shade green, and y has the determinate shade red )

since, again, this relation satisfies the conditions before condition h. In par-
ticular, notice that it satisfies g’. For suppose it holds between objects x and
y during some time period. Any alteration in the color of exactly one of x
and y would make R cease to hold, and any other alteration in exactly one
of x and y would also make R cease to hold.

But these cases can be generalized in ways that get around conditions h
and i. For the sake of definiteness, let us develop a specific objection that
generalizes the mirror image case. Suppose that there is some fundamental
intrinsic magnitude called “parity” that comes in two degrees: on or off.
Further suppose that an object’s parity is independent of its other intrinsic
properties (except those like being on and being green), and let:

R = AxAy(x and y are intrinsically exactly alike except that x is
on iff y is off)

Now suppose that x is on and y is off, but they are otherwise exactly alike.
Our definition gives the wrong answer: that x and y are perfect duplicates.
In particular, notice why R satisfies g’. If x but not y altered by changing its
parity then R would cease holding between them. On the other hand, if x but
not y altered in some other way, then again R would cease to hold between
them, since R requires that its relata be exactly alike in respects other than
parity. Also notice that R seems to satisfy h. The state of affairs x and y’s
standing in R does not entail any determinate parity for either x or y.

B3t is not clear that mirror images are not duplicates. In fact, the analysis of duplica-
tion I accept in section 4.2.1 is consistent with mirror images being duplicates. And this
consequence seems acceptable.
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We may generalize the color case if we help ourselves to a set of deter-
minate shades of red; where the index i ranges over, say, the real numbers
between o and 1. The following relation satisfies the conditions in Slote’s
definition:

R = AxAy(x and y are exactly alike except that Yi€(0, 1), x is red,

e it

iff y is red;, where j = -

The cases can be generalized further. We need the concept of an intrinsic
profile from section 4.2.2. An intrinsic profile is a maximally specific intrinsic
property. I note two facts about intrinsic profiles:

(F1) every (possible) object has exactly one intrinsic profile

(F2) a possible object alters iff it changes intrinsic profiles

(Fr) follows from principle (C2) from section 4.2.3, which says that a prop-
erty P is an intrinsic profile iff the set of P’s (possible) instances is a maximal
set of possible duplicates (provided we assume, as I do, that properties are
individuated by necessary coextension). For the set of maximal sets of pos-
sible duplicates is a partition of the set of possibilia, and thus every possible
object falls into exactly one of these sets. (F2) also follows from (C2), since
an object alters between ¢, and ¢, iff its instantaneous stage at ¢, is not a
duplicate of its stage at ¢,.

Call the set of intrinsic profiles “IP”. A function f is a permutation of IP
iff f is a bijection from IP onto itself. For any such function f, if the relation:

(*) R=AxAyAt[VPeIP P(x,t) iff f(P)(y,t)]

holds between objects x and y at some time, then all of the conditions before
condition i will be satisfied.!* In particular, condition g’ will be satisfied. For
suppose that x, but not y, were to alter between ¢, and ¢,. We show that it
follows that R cannot hold between x and y throughout the closed interval
[t,,t,]. Suppose otherwise. Call x’s intrinsic profile at ¢, “P”, its profile at ¢,
“Q”, and call y’s profile at both ¢, and ¢, “S” (we here appeal to (F1)). Since

14 Actually, in some extreme cases condition e might fail. Suppose R is defined as in (*)
via some function f such that, necessarily, if R holds between objects x and y, then for any
intrinsic profile F that x could then alter to have, it would be impossible for y to alter to
have f(F) (perhaps because the complement of f(F) is an essential property of ).
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y does not alter during this interval, we know that y has the same profile at ¢,
and ¢, because of (F2). From (F2), we can infer that P # Q, since x does alter
during the interval. Since R holds between x and y at ¢,, we have § = f(P),
by (*) and (Fz). Similarly, since R holds between x and y at ¢,, we have
S =/£(Q). But since P # Q and f is a bijection, we have a contradiction.

So let x and y be any objects that exist at time ¢ and are not incongruous
pairs (say, my head and the Eiffel Tower). Let f be any permutation of IP
such that f(x’s intrinsic profile at ¢) = y’s intrinsic profile at ¢, and define R
as in (*). Slote’s definition yields the result that x and y are exactly alike at
t.

It seems that conditions h and i must be replaced by some more general
condition that will rule out all these counterexamples. Notice that there is
one permutation of IP such that, when relation R is defined in as in (*),
then R must be the relation being a perfect duplicate of. This is the identity
permutation: f(F)=F, for all F €IP. For on that choice, R holds between
x and y iff they have the same intrinsic profile—i.e. iff they are duplicates,
whereas for other permutations, the resulting R can sometimes hold between
objects when they have different profiles—i.e. when they are not duplicates.
So I suggest that we add the following condition:

j R is (necessarily) reflexive

Intuitively, the situation is this. Condition g’ insures that, if the relation R
holds between two objects through some period of time, any alteration in
one of the objects must be exactly accompanied by simultaneous alteration
in the other object. This is satisfied when R = is a perfect duplicate of. But,
as we saw in (*), this can be achieved by any other choice of R that sets up
a “determinate correspondence” between the intrinsic profiles of its relata.
Requiring that R be reflexive rules out all relations of the form specified
by (*) except the the one corresponding to the choice of f as the identity
function, and this is the one choice that yields the correct answers.

It is unclear whether or not Slote could make use of condition j in his
original project. Recall that he does not use the notion of a relation in his
definition. Whether or not condition j could be adapted to suit Slote’s pur-
poses, I do not know.

Given condition j, we can simplify the definition. Condition e is intended
to rule out the case where R = AxAyAz(neither x nor y is altering at t).
Condition f is intended to rule out the case where R = Ax Ay Az(both x and
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y are altering at ¢). Since there are objects that can exist without altering,
and objects that can exist and alter, condition j rules these cases out. So I
propose we drop conditions e and f.

Furthermore, I recommend that we strengthen g’ to a stronger claim that
is every bit as intuitive as the original:

g’ OVx'Vy'VeVe'([t#£t'AR(x',y', [, t'])] = [Alter(x’, £, " )«—Alter(y’, ¢, ¢")]

So, I propose the following adaptation of Slote’s definition:

)

Analysis of Alikeness 3:
Let x and y be non-identical mutable temporally unbound entities.
Alike(x,y,ty) =4 IR that is existence-entailing and such that
a R(x,y,t,)
b YtOR(x,y,t)
¢ YtO[Exist(x,t) A Exist(y, t) A~R(x,y,t)]
g’ OVx'Vy'VeVi'([t#£t'AR(xX',y',[t,t'])]—[Alter(x’, t,t")e—Alter(y’, t, ")

j R is (necessarily) reflexive

I have not been able to create problems for this analysis of alikeness. But
the concept of alikeness is not as general as the concept of duplication. The
actualist modal language, the language used by Slote to state his definitions,
has quantifiers that range, at any given time, over objects in a single world.
In this language, when one says “Necessarily, x and y are alike iff ...”, x and
y are assumed to be in the same possible world. So the concept of alikeness
that I have been analyzing applies only to objects in the same possible world.
Moreover, the concept only applies to objects at a single given time. But we
might want to ask whether objects that exist at different times, or in different
possible worlds, are duplicates—i.e. exactly alike. Furthermore, we use the
concept of duplication to analyze the concept of an intrinsic property. Can
the concept of alikeness do this job just as well?

One might think to generalize from Slote’s definition as follows. First use
‘alike’ to define ‘intrinsic’:
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P is intrinsic iff OVxVyVi[Alike(x,y,t)—(Px<«>Py)]

(That is, intrinsic properties are those that can never differ between world-
mates that are exactly alike at a time.) Then go on to define ‘duplicate’ (here
I use possibilist quantifiers). For any times ¢, and ¢,, and possible objects
x and y (perhaps in different worlds), let us use “Dup(x,y,t,t')” to mean
“x as it is at ¢ is a duplicate of y as it is at t’”. (The cumbersome locution
must be used since we are following Slote in thinking of objects as temporal
continuants, and thinking of properties as being had relative to times.)

Dup(x,y,t,t") iff for any intrinsic property P, P(x,t) iff P(y,t’)

Roughly, this says that objects are duplicates (relative to two times) iff they
have the same intrinsic properties (at those times).

This attempt is a failure. Take a clearly intrinsic property—the property
roundness. Now consider any possible world w such that for every time ¢,
there are no distinct x and y such that Alike(x,y,t). We define a new property
as follows:

x has P at time t iff either (x’s world is not w and x is round at
t) or (x’s world is w and x is not round at ¢)

Surely roundness never differs between pairs of alike objects (since alike ob-
jects are, in my terminology, duplicates that inhabit the same world and
time). But then P never differs between alike objects either. For P could
never differ between alike objects in any world other than w since it has the
same extension as roundness in those worlds. But it can never differ between
alike objects in w either, since in w, at no time is there a pair of distinct alike
objects. Thus, P satisfies the current definition of ‘intrinsic’. This seems in-
correct. And there is more trouble. Let x be an object in w that is round
at time ¢, and let y be a round object in some other possible world that is,
intuitively, at time ¢ exactly like x is at ¢. By the definition of ‘P’, y does not
have property P whereas x does have property P, and thus x and y turn out
not to be duplicates at t.

A better strategy would be to rework Slote’s definition from the beginning
to apply to objects in different possible worlds. To do this, I will use the
possibilist language with possibilist quantifiers. I will also assume that we
can speak meaningfully of crossworld and crosstemporal relations (e.g. x at
ty is redder than y at t,, where x and y are in different worlds). Let x and
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y be any two possible objects. When relation R holds between object x at
time ¢ and object y at time ¢/, I will write “R(x,y,t,t")”.

Finally, I need notation for the crossworld and crosstime analog of R(x,y, [¢,t']).
Intervals [¢,¢'] and [¢”,¢"] are congruent iff they have the same (temporal)
length. Let [¢,¢'] and [¢”,¢"”] be congruent intervals; for any t* € [¢,t'],
let “¢” + ¢* — t” denote the time in the interval [¢”,¢”] that is as far from
t” as t* is from ¢. I will write “R(x,y,[t,t'],[t”,t”])” when i) the inter-
vals [#,t'] and [¢”,¢"] are congruent, and ii) for every ¢* € [¢,t'], we have
R(x,y,t*,t" +t* —1).

Analysis of generalized alikeness:»

Let x and y be non-identical mutable temporally unbound entities.
GenAlike(x,y,ty, t;) =4 IR that is existence-entailing and such that:
a R(x,y,tyt,)
b VeVe'dx'dy'R(x',y', ¢, 1))
¢ VeVi'Ax'dy'~R(x,y', t,t")

g’ Vx'Ny'VeVe'Ve"Ve"' [t £t AR(x,y',[t,¢'],[¢",t"]))—
(Alter(x’, t,t"ye—Alter(y’, t”,t"))]

j R is (necessarily) reflexive (i.e. VxV¢R(x,x,¢,t))

(The quantifiers here are possibilist.) The intention is that the definition will
be satisfied just when R is the relation born by x at ¢ to y at ¢ iff x’s stage
at t is a perfect duplicate of y’s stage at t'.

But there is a problem even with the new definition. The notion of gener-
alized alikeness is still not general enough. It is restricted so as not to apply
to immutable objects, objects that cannot alter. This is no accident. Let R’
be any binary relation that satisfies conditions b and c, and holds between
two immutable objects 2 and 5. Now consider a new relation R, defined as
follows:

3T ignore the fact that the original definition involved de re modality—this was irrelevant
to the substance of the definition.
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R(x,y,t,t") iff EITHER (i) either x or y is mutable, and x at ¢
and y at ¢’ are duplicates, OR ii) both x and y are immutable
and R'(x,y,t,t"))]

This relation R satisfies the conditions in the definition. Moreover, 4 and
b stand in R; thus, 2 and b would be said to be GenAlike by that def-
inition, despite the fact that R’ was an arbitrarily selected relation and «
and b were arbitrarily chosen immutable objects. In particular, notice why
R satisfies g”. Consider any two possible objects x” and y’, and suppose
we have R(x',y’,[t,t'],[t",t"]). If either x’ or y" are mutable, then clearly
Alter(x’, t,¢") iff Alter(y’,¢”,t") in virtue of clause i) of the definition of R
above. But if x” and y” are each immutable, then this will also hold trivially,
because of the fact that neither can alter.

Our concept of generalized alikeness, then, is restricted to mutable ob-
jects, and therefore is less general than the notion of duplication, which ap-
plies equally to mutable and immutable objects.

One might follow the generalizing strategy outlined above. First define
‘intrinsic’ using generalized alikeness, and then analyze the more general no-
tion of duplication in terms of intrinsicality. The proposal is this:

P isintrinsic iff VtV’'VxVy[(x and y are mutable and GenAlike(x,y, ¢, t"))—(P(x, t )«=>P(y,t’)
Dup(x,y,t,t’) iff for any intrinsic property P, P(x,t)«—P(y,t’)

(The quantifiers here, remember, are possibilist. The definitions say the
following: a property is intrinsic iff it can never differ between mutable
GenAlike objects; two objects, even immutable objects, are duplicates iff
they share all intrinsic properties.)

This approach will fall into error if there are some properties that are not
intrinsic, but which are particular to immutable objects. For let P be such a
property. P will never differ between mutable generalized alike objects, since
no such object ever has P, so we get the incorrect result that P is intrinsic.
Moreover, this will create problems for the definition of ‘duplicate’, since
this intuitively extrinsic property will be required to be shared by duplicates.

The question, then, is: are there any extrinsic properties particular to
immutable objects? I think there are. The property being an instantaneous
stage of Ted is extrinsic, for I might have had an exactly similar identical
twin whose stages would be duplicates of my stages, but would not have
this property. But no mutable object ever has this property, because of the
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fact that instantaneous stages cannot change, being unable to persist through
time.'®

I think, then, that we cannot analyze intrinsicality and duplication along
Slotean lines. I argued above that Slote’s analysis of alteration is unsuccess-
ful. Even if we grant ourselves that concept, I have failed to use this concept
to analyze intrinsicality and duplication. I suggest that Lewis’s view on this
matter is correct: ‘intrinsic’ and ‘duplicate’ cannot be defined in terms of
“quasi-logical” notions.

16 Another sort of example appeals to “purely” abstract entities, if there are such things.
Impure sets are perhaps not immutable; perhaps when I get a haircut my unit set alters.
But numbers, on the other hand, seem different. Surely, orthodoxy says that the number 9
is immutable. So, if the property numbering the planets is an extrinsic property, we have
another example. However, I do not urge this example since I am wary of applying the
notion of intrinsicality to purely abstract entities.



Chapter 9

Naturalness and Metrical Realism

The usefulness of the natural/nonnatural distinction is not limited to its rela-
tions to intrinsicality, duplication, and related notions. In “New Work for a
Theory of Universals”, David Lewis finds an abundance of applications for
the distinction. Indeed, the philosophical utility of the concept of naturalness
is a primary reason for its importance. In this chapter I discuss yet another
of its applications.

9.1 Preliminaries

First, let me review some of the assumptions that I laid out in chapter 2.
I assume that necessarily coextensive properties and relations are identical;
this means that I may conveniently single out a property or relation by spec-
ifying its extension in every possible world. In fact, for convenience I will
often talk as if I identify properties with the sets of possibilia that instantiate
them; similarly for relations. Unless otherwise indicated, my quantifiers are
possibilist.

The natural properties and relations are the most fundamental properties
and relations—chapter 3 lays out my theory of naturalness. In this chapter I
will ignore the fact that the natural/nonnatural distinction is best construed
as a matter of degree, so when I say ‘natural’, I mean ‘perfectly natural’.
Some take naturalness to be an unanalyzable primitive; I call these theorists
primitive naturalists.

We must be clear on the distinction between mathematical and physical
spaces. Mathematical spaces are abstract mathematical objects. Physical

168
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spaces may be represented by mathematical objects, but they are themselves
“concrete”.!

Let us look at an example (the mathematics is simplified for clarity). The
mathematical Euclidean 3-space may be thought of as the pair (R°,d;). R
is the set of real numbers, so R (i.e. R x R x R) is the set of three-tuples of
real numbers. A member of R, (x,y,z), is a “point” in the space. dj is the
“Euclidean distance function”: the real-valued two-place function over R’

defined as follows:

dp((x,7,2),(x',7',2')) = 4/ (x = X' +(y = ') 4+ (2 — 2')?

Once, people thought that the physical space of the actual world was Eu-
clidean. Let’s suppose for the sake of the example that they were right. We
may take the physical space of the actual world to be the pair (S, D), where
S is the set of the actual world’s physical points, and D is the actual two-
place physical distance function defined over the points in §.> § and D are
not thought of as being purely mathematical entities. The members of § are
real points in space, not representations. The value of the function D for
arguments p, and p, is the actual distance between points p, and p,. I con-
sider in section 9.1 below just what it is for a function to be the real distance
function for a physical space.

The claimed relation between the mathematical Euclidean 3-space and
the physical space was one of representation; to say that physical space
is “Euclidean” is to say that the mathematical Euclidean 3-space correctly
represents physical space. “Representation” here means isomorphism, so
the mathematical space (R’,d;;) correctly represents physical space (S, D) iff
there is a one-one map f from S onto R? such that for any points p, and p,
in S, D(py, p) = dp(f (p1), /(p2))-

Modern differential geometry teaches us of other mathematical spaces
besides Euclidean 3-space. For example, if the Euclidean distance function
dy in (R°,d;) is replaced by an appropriate distance function d; the result-
ing space (R’,d) will be “non-Euclidean”. The claim that the geometry of
physical space might be non-Euclidean is the claim that a non- Euclidean

IThe word ‘concrete’ is a bit of a weasel-word. See Lewis’s tirade in Lewis (1986¢, section
1.7). All I mean by calling physical spaces “concrete” is to distinguish points of physical
space from the mathematical objects that represent them in a mathematical space.

2 Actually, there will be a family of such functions corresponding to arbitrary choices of
units.
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mathematical space might correctly represent (be isomorphic to) physical
space. There are constraints d must satisfy in order to qualify as a distance
function—these constraints are laid out by mathematicians. For example,
d must always assign positive numbers. Another example: if point p, is
(linearly) between points p, and p,, then d(p,, p,)+ d(p,, p;) must be equal
to d(p,, p;)-> But many distance functions are possible that satisfy the con-
straints. The distance function that is paired with the set of points in a math-
ematical space is that space’s metric. The physical distance function, as well,
is called the “metric” for that physical space.

I will discuss only space, ignoring time and spacetime. I intend what I
say to carry over to time and spacetime. I generalize this simple discussion
of mathematical and physical spaces in section 9.2.3.

I now want to explore the application of naturalness to a problem in the
philosophy of space and time: the statement of metrical realism.* Along the
way we will learn a good deal about primitive naturalism and naturalness.
Section 9.2 introduces the problem of the statement of metrical realism and
gives a solution involving naturalness. In sections 9.3 and 9.4 1 reply to
objections to the proposal of section 9.2.

9.2 Metrical Realism

9.2.1 Introduction to Metrical Realism

The absolutist believes that points of space exist. The relationalist denies
this—there are spatial relations between material objects, but the only “points
of space” are mathematical surrogates we introduce for convenience in sci-
ence. Let us be absolutists, realists with respect to the existence of points of
space.

We could go further. We could be realists with respect to the metric struc-
ture of space as well, countenancing objective facts about distances.

There are the various Euclidean and non-Euclidean mathematical spaces.
The natural expectation is that, just as there are various mathematical spaces,
so there are various possible physical spaces. But some have denied this. Ac-
cording to Hans Reichenbach, for example, there is no non- conventional

3Betweenness in R? may be defined in terms of the usual structure of R>.
“Phillip Bricker suggested to me the idea of using naturalness and the Ramsey-Lewis
method for defining theoretical terms.
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answer to the question: Is space curved or flat? Suppose that I say that space
is flat, whereas you say that it is curved. We still may not disagree on any
prediction of the outcome of any possible observation if I invoke “univer-
sal forces” that systematically distort physical objects. Where you say that
an object retains its geometrical properties but moves through curved space,
I say that it moves through flat space but is distorted by universal forces.
According to Reichenbach, we do not really disagree. Our theories are the
same theory expressed in different vocabulary.’ Since geometrical theories
can always be protected from refutation in this way by appropriate adjust-
ments in physical theory, Reichenbach’s positivistic view is that the various
geometrical theories do not correspond to different physical possibilities.

Others say that there is a fact of the matter as to the metric structure of
space. Some possible worlds have Euclidean spaces, others have Riemanian
spaces. At some possible worlds, physical space is curved; at others it is flat.
If we agree then we are metrical realists.

Let us be realists in this way as well. It is surely the natural view. But how
shall we understand this realist thesis? The claim we need to make is that the
different mathematical metric functions correspond to different possibilities
for physical space. More specifically, let W be the class of possible worlds,
and S be the class of mathematical spaces. In a strong and crude® form, the
claim would be:

Metrical Realism 1 there is a function f from W onto §, such that Vo e W,
f(w) is the unique member of § that correctly represents the physical
space of w.

9.2.2 Physical Distance Functions

On the face of it, this claim of the metrical realist seems a little mysterious. In
the introduction I said that mathematical spaces “represent” physical spaces
by isomorphism. I called the “physical space of the actual world” a pair
(§,D), where S is the set of the actual physical points, and D is the “real
distance function”. But this raises two related issues. First, we need to know
what makes a function the “real distance function” of a given possible world.

3See Reichenbach (1958, chapter 1), and Sklar (1974, pp. 88-146).

®This is crude firstly because some worlds might have no spacetimes at all, secondly
because of the problem of the arbitrary choice of unit, and thirdly because the notion of a
mathematical space must be generalized. These issues are addressed below.
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Second, we need some account of how we single out this correspondence
with our language. The issues might be stated in question form: i) what
facts about w’s physical space make D its distance function? and ii) how do
we single out D with words like ‘distance’? The second question becomes
pressing when it is recalled that distance between spatial points only indi-
rectly connects up with observable states of affairs. We cannot sense points
in space. Distances between points in space cannot be identified with, say,
results of measurements using standard apparatus, for it is possible for that
apparatus to be physically distorted and give results that deviate from true
distances. We seem to have no direct “access” to metric facts about space,
so how can we link up our words with spatial relations?

Here is our predicament. Consider a possible world w. As metrical real-
ists, we believe in a distance function D for the physical space of w. What
makes D the real physical distance function of w, and how do we single it
out with our word ‘distance’? Here is a first stab at an answer to both ques-
tions. Maybe there is exactly one function from pairs of physical points of
w to real numbers with the characteristics appropriate to distance functions.
This, the realist could claim, is the real distance function. We achieve refer-
ence to this function by stipulating that ‘the distance function’ refers to the
one and only function with such and such characteristics.

This of course would be a mistake. Suppose § is the set of w’s physical
points and D is such a function. Then the image of D under any one-one
map of § onto § will be such a function as well. But the correction is close
at hand. I will complicate my proposal in later sections, but the basic idea
is that the realist’s claim should be that there is exactly one natural function
from pairs of w’s physical points to real numbers with the appropriate struc-
ture, and this is the real physical distance function. We achieve reference to
this function by stipulating that our word ‘distance’ is to refer to the unique
natural function with the appropriate characteristics. We should treat claims
about physical distance using the Ramsey-Lewis method for defining theo-
retical terms (Lewis, 1970). The sentence

a and b are three feet apart
would be analyzed as

There is exactly one natural function f from pairs of w’s phys-
ical points to numbers with such and such characteristics, and

fla,b)=3.
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9.2.3 The Proposal Generalized

Some comments should be made about geometrical concepts other than met-
rical concepts, such as the concept of betweenness. First, I would treat ref-
erences to such concepts in the same way as references to metrical concepts:
using the Ramsey-Lewis method. For example, as a first approximation,

physical point p, is between physical points p, and p;
could be interpreted as meaning:

there is exactly one natural relation R over triples of w’s physical
points with such and such characteristics, and R(p,, p,, p5)

This is a “first approximation” since I must immediately refine the claim.
All geometrical concepts should be “Ramsified” at once. Suppose there are
m geometrical concepts C,...C, . Let sentence ¢ be a complete geometrical
characterization of these concepts. For each geometrical concept C (distance,
betweenness, etc.) ¢ will have a conjunct ¢ that characterizes C, and a
free predicate variable V. that stands for C. ¢ characterizes C in part
by having free occurrences of variable V; for example, ¢ could require
that C be a transitive binary relation by containing the following conjunct:
"VxVyVz[(Voxy A Veyz)—Vexz] " specifying the characteristics of C. But
¢ may contain free variables corresponding to other geometrical concepts
as well, since constraints made on one concept may involve its relations to
another concept. (For example, I noted above that a distance function D is
constrained by the requirement that, if point p, is between points p, and p;,
then D(p, p1) + D(py> p3) = D(py, p3)-)

The geometrical concepts C, ... C, will be defined to be the unique »2 nat-
ural relations/functions satisfying ¢. Any sentence ¢ containing references
to some geometrical concepts will be interpreted as meaning;:

there are exactly m natural relations/functions V. ...V over
R . . y 1 m
w’s physical points such that ¢, and ¢

where ¢ is the result of replacing every term purporting to refer to a geo-
metrical concept C in ¢ by the variable V..

We may now generalize our analysis of the claim that a given mathemat-
ical space represents a given physical space. The mathematician explores
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affine structure, topological structure, etc. in addition to metric structure.”
But when I characterized mathematical spaces as pairs of the form (R, d)
for various distance functions d, I was focusing on a special case. A more
general way of characterizing a mathematical space would be to take it to be
a pair (§,Q) of a set § and a set Q. S could be any set whatsoever, thought
of as the the set of “points” of the space, and Q would be a set of mathe-
matical entities defined over the members of S that specifies the structure of
the space. We have focused on one sort of member of Q: distance functions.
But Q could also include a 3-place betweenness relation, or other, more com-
plicated, mathematical entities.® There is a corresponding generalization of
the concept of physical space: take the physical space of world w to be the
pair (S, Q. ), where §_ is the set of w’s physical points and Q,, is the set of
physical geometrical relations/functions restricted to the points of S . For
example, Q_ might include the physical distance function over points of w,
the physical betweenness relation over points of w, etc. The members of Q_
are defined all at once to be the unique natural relations satisfying such and
such restrictions, as I outlined above. And to say that mathematical space
(S,Q) represents (S_,,Q.,) is, as before, to say that the two are isomorphic.

A goal for metrical realism was to interpret the claim that world @ has
such and such metrical structure. Notice that the view [ am proposing lets us
interpret analogous claims for non-metrical structure. For example, to claim
that the physical space of a certain world has certain topological features
would be to claim that its physical space is represented by a mathematical
space with those topological features. This claim, on the present view, is
the claim that there are certain natural relations over physical points with
certain properties.

Notice another feature of the view: some claims about physical space will
be claims that there are 7o natural relations over physical points with such
and such properties. For example, suppose we want to claim that a world
w has a neo-Newtonian space. Along with the claim that certain entities are
natural, this will involve the claim that no entities are natural that would
correspond to absolute velocities or positions.”

’See Sklar (1974, pp. 46—54) for a brief nontechnical survey.

8In my simplified example where R® was the set of points, I was assuming its usual
structure. In the general case, this structure would need to be put into Q, for in the general
case the set S of points is merely a set with no tacitly assumed structure.

9See Sklar (1974, pp. 202—209) for a brief introduction to neo- Newtonian spacetime.
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9.2.4 The Proposal Refined

For the rest of the chapter, I will mostly discuss distance functions, but it
should be kept in mind that I envision all geometrical concepts being Ram-
sified at once, as in the previous section. For simplicity, I will pretend that
geometrical facts about a world w may be described completely by a two
place real-valued distance function over the physical points of w’s space.
Hence, the simple theory I am working with at present is the theory Metri-
cal Realism 1 from section 9.2.1, conjoined with the claim that the physical
distance function at a world @ is the unique two-place real-valued natural
function D defined over w’s physical points with characteristics appropriate
to distance functions.

There are several refinements to our proposal that we must make. The
first deals with units. Surely there is nothing special about using feet as our
unit of distance. Hence it is implausible that there is a natural distance func-
tion in terms of feet, but not one in terms of meters. The realist’s claim might
be modified: there is exactly one family of natural functions from pairs of
points to real numbers (with the appropriate structure), such that the func-
tions in the family are suitable transformations of each other. In our simple
case of three-dimensional space, the suitable transformations would be ex-
actly the scalar transformations: function D is a scalar transformation of
function D’ iff there is a real number & such that VxVy[D(x,y)=kD’(x,y)].

But there is another problem. I argued in chapter 5 that natural properties
and relations cannot involve numbers if numbers are entities that can be
constructed in various equivalent ways from sets. The brute force solution
would be to accept real numbers as primitive entities. There is, however, a
more moderate solution.

In measurement theory, questions of the following form are answered:
given a certain class of entities and relations among those entities, what
numerical measurement functions can be defined over those entities corre-
sponding to those relations, and to what extent are those functions unique?
For example, given the relation of greater than or equal length and the oper-
ation of concatenation, and their formal properties, what corresponding real
valued length function can we construct for a given set of measuring rods?'°
The length function to be constructed must “correspond” to the original re-
lations in the following sense. Let “Rxy” mean that rod x is at least as long

10See Krantz et al. (1971) for specifics on the theory of measurement.
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as rod y, and let “x = yoz” mean that rod x is a concatenation of rods y and
z. Length function / corresponds to the original relations iff for all rods x,
y, and z, i) if Rxy then [(x) > [(y), and ii) if x =y oz then [(x) = [(y)+(2).

I had imagined the realist claiming that the distance function, a function
from pairs of physical points to numbers, is the entity to which naturalness
accrues. But the realist could avoid this by using measurement theory. In the
measuring rod example, relations among the set of measuring rods enabled
definition of a corresponding length function. The metrical realist would pur-
sue an analogous strategy based on natural relations among physical points
of space. If certain natural relations among physical points satisfy certain
formal constraints, then distance functions will be definable. In fact, there
will be a family of definable functions corresponding to different arbitrary
choices of units. The realist’s claim, then, should be modified: the distance
functions of a world are those definable from certain natural relations over
that world’s physical points using measurement theory.

I will illustrate this proposal with an example: the definition of a metric
for a three dimensional Euclidean space, taken from Suppes, Luce, Krantz,
and Tverski’s Foundations of Measurement Volume 2, pp. 84—111 (“FM2”).
Suppose at world w there are just two natural relations over the set S of w’s
space points: a ternary relation B and a quaternary relation ~. Intuitively,
B is betweenness and ~ is congruence; we have Bxyz iff y is between x and
z, and we have xy~zw iff the distance between x and y is equal to that
between z and w. I say ‘intuitively’ for I assume no primitive grasp of these
relations, nor any operational definitions in terms of measurements. These
relations are singled out as being a betweenness relation and a congruence
relation solely by the fact that they are natural relations satisfying certain
formal constraints. FM2 lists these constraints; here are a few examples:

if Bxyx then x =y

Xy~yx
if Bxyz, Bx'y'z', xy~x'y’, and yz~y’z’, then xz~x'z’

If natural relations B and ~ satisfy these constraints then, I say, they are a
betweenness relation and a congruence relation, respectively. Now suppose
further that that these relations satisfy certain additional formal constraints.
These further constraints have the result of determining whether or not the
space is Euclidean. Here is one example, which we may suppose holds of the
physical points from w:
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(*) if Bxvw, Byvz, and x # v, then there are # and ¢ such that Bxyu,
Bxzt,and Buwt

(*), in fact, corresponds to Euclid’s famous parallel postulate, which requires
that for any point p not on line /, there is exactly one parallel to / through
2

Say that D is an acceptable distance function for w iff D is defined over
all pairs of points of S_, and D(x,y) = D(z,w) iff xy~zw. FM2 theorem
13.11 implies that for any acceptable distance function D, the physical space
(S, D) is isomorphic to the mathematical Euclidean 3-space (R?,d;;) defined
above. That is, D is a Euclidean distance function. Were (*) above replaced
by something different, the acceptable distance functions for w might be
non-Euclidean.

This example showed how we may start with a pair of relations (B and
~), assumptions about those relations’ formal properties, and prove that the
resulting distance functions have a certain structure (in the example, they
were Euclidean). Rather than claiming that there are natural functions re-
lating physical points and numbers, I construe metrical realism as accepting
natural relations over physical points, and constructing corresponding func-
tions involving numbers using measurement theory.

An important fact from measurement theory is that that there are often
different ways to construct a given measurement function. A certain system
of relations may suffice, but there may also be some other system of rela-
tions that will do the trick as well. The metrical realist should not focus on
any one system of relations. If one set of relations among a given world’s
physical points is natural and has the appropriate formal properties to en-
able construction of distance function D, then this would be enough for the
realist to say that D is a physical distance function for w. And if more than
one set of natural relations can do the job, then this would be fine as well, so
long as the resulting distance functions agree.!! These distance functions are
only required to be unique up to certain transformations (recall the arbitrary
choice of units).

Presumably, if at a given possible world there is no such set of natural
relations, or if there are more than one that yield incompatible metrics, then
realism should have the consequence that there is no fact of the matter at
that world about the metric structure of space. Our statement of metrical

Recall the problem of minimality from section 3.2.1.
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realism, then, is as follows. Let W be the set of possible worlds, and S be
the set of mathematical spaces.

Metrical Realism 2 there is a function f such that for every w € W, f as-
signs to w the set of members of § that represent (are isomorphic to)
(S.,,D), where S is the set of w’s physical points of space, and D is
some physical distance function for w.

(R1) D is a physical distance function for world w iff i) there is a family
of natural relations R over w’s physical points of space sufficient to
define D (unique up to an appropriate transformation) and ii) no other
such family of natural relations R’ allows definition of a function D’
(unique up to an appropriate transformation) that is 7ot an appropriate
transformation of D.

Notice that f(w) will be empty if no mathematical spaces represent the phys-
ical space of w. This might be if there are systems of relations at w that allow
definition of conflicting metrics, or if w has no physical space at all. Remem-
ber that this is all done for a special case—physical spaces of the form (S, D).
I indicated in section 9.2.3 how this may be generalized.

My proposal is schematic at certain points. For example, I say that the
distance function definable from some set of natural relations must be unique
up to an “appropriate transformation”, but I never say what transformations
are appropriate. I expect that this and similar questions will be answered by
the mathematicians. Also, I take as unanalyzed the notion of a point of space.
(It would be interesting to investigate how this could be avoided.)

9.3 The Problem of Extra Relations

In the next two sections I discuss problems for this approach to metrical re-
alism. The first is the problem of “extra relations”. My approach to metrical
realism will fall into error if there is some spurious natural relation that, in-
tuitively, has nothing to do with distance or metric, but gets mistaken for a
real distance relation because it just happens to have formal properties that
enable definition of a metric. Let R be such a relation; suppose it has formal
properties adequate for the definition of a bogus metric M. If no other natural
relations enable definitions of conflicting metrics, then (R1) entails that M is
the metric of the actual world, despite the stipulated fact that R has nothing
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to do with distance or metric. On the other hand, if there are other natural
relations that enable definition of a conflicting metric (intuitively, the real
metric), then (R1) says that our space has no metric structure. Either way,
we have bad news. This is the problem of extra relations.

There are several responses to this problem; I remain undecided. One
would be to claim that we have some way of singling out, from all the nat-
ural relations among points with the appropriate structure, the ones that
correspond to real facts about distance and metric. This would be an ad-
mission that (R1) is unacceptable as stated, and needs to be supplemented.
But how could we single out the “real” metrical natural relations from the
bogus ones? Not perceptually. Not by means of formal structure, since the
problem is that these bogus relations have the same formal structure as real
metrical relations.

Another response to the problem of extra relations is to deny the possi-
bility of extra relations. Perhaps it is a reasonable conjecture that the only
natural relations holding between space points with formal properties ad-
equate to define metrics are the right kind of relations, and not spurious
relations that happen to have the relevant formal properties. The only other
natural relations among space points that one can think of seem not to have
the right formal properties for definition of metrics (consider betweenness,
simultaneity, etc.) And, it may be a reasonable conjecture that all natural
relations are spatiotemporal. We seem to have no clear counterexamples.

Finally, there is biting the bullet—standing by the consequences of (R1),
come what may. Dialectically, this response is in fairly good shape. “You
who maintain that there could be an extra, “bogus” natural relation: what
makes that relation bogus? What distinguishes it from a real metrical rela-
tion? If some relation over spatial points is natural, and has formal properties
that enable definition of a distance function, then I am prepared to stand by
(R1) and call it a genuine metrical relation; I am perfectly happy to call the
resulting function a genuine distance function. My concepts of metricality
and distance extend no further.”!?

12phillip Bricker has convincingly defended the third option (which, perhaps, is a dramatic
version of the second option).
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9.4 Primitive Naturalism and Contingency of the Met-
ric

9.4.1 An Argument

In this section I want to consider the following objection. The metric struc-
ture of space is surely a contingent fact. But (R1) does not seem, on the face
of it, to allow for the metric to vary properly from world to world. Suppose
that the physical space of our world is Euclidean. According to (R1), this
is because a certain system of natural relations among our world’s physical
points enables definition of a Euclidean distance function. But on my concep-
tion of naturalness, naturalness is a property of properties and relations; not
a relation between these entities and possible worlds. So, since the relations
are natural not just at our world, but natural simpliciter—natural at every
world—it seems that they will make the spaces of those worlds Euclidean as
well.

I believe, however, that there is no problem here. Furthermore, show-
ing that there is no problem will, I believe, bring to light some facts about
naturalness.

First, we must get clearer about the objection. Let us accept (R1), for
the present. Further suppose that the metric of the space of @, the actual
world, is Euclidean. To simplify matters, suppose that this is because there
is exactly one natural relation R relating @’s points with the formal structure
necessary to enable the definition of a distance function, and that the function
is Euclidean. Where w is any world, the conclusion of the following valid
argument implies that @ cannot have a non-Euclidean space. But @w was an
arbitrarily selected world. So if [ am committed to each premise, then this
would show that I cannot account for the contingency of the metric.

Argument Against Contingency
(1) R relates the physical points of w.

(2) If (1), then (a): R enables the definition of a Euclidean distance function
over the physical points of w.

(3) If (a) then the metrical structure (if any) of w’s physical space is Euclidean

(4) Therefore, the metrical structure (if any) of w’s physical space is Eu-
clidean
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The idea behind the argument is as follows. (1) is true because R, being a
natural relation, cannot have “gaps” in its spread over logical space. (2) is
also defended by appeal to R’s naturalness: a natural relation ought to have
the same formal properties from world to world. Finally, I am committed to
premise (3) since i) natural relations are natural simpliciter, so ii) R is a nat-
ural relation allowing definition of a Euclidean distance function over w’s
points, and hence iii) (R1) implies that w’s distance functions (if there are
any) will be Euclidean. (The “if any” proviso is present because if there are
some other natural relations that relate the points of @ and enable definition
of a distance function that is #ot an appropriate transformation of the Eu-
clidean distance function definable from R, then (R1) has the result that w
has no physical distance function).

As I see it, the first two premises are open to question. The justifications
for the premises will be explained in more detail when I consider attacks on
those premises. Suppose that w is a world that we would want to say has a
non-Euclidean space; I consider premises (1) and (2) in turn.

9.4.2 Rejecting Premise (1)—Relation splitting

I see no reason why I cannot hold that R contains no ‘tuples of points from w.
R only relates points from Euclidean worlds like @. There may be other rela-
tions that relate w’s points, and have over w’s points the same formal struc-
ture as R has over @’s points. Indeed, if @ has as many physical points as @,
there must be some such relations.!? But I can claim that R is not among these
relations, and moreover that none of these relations are natural—hence, [ am
not forced by (R1) to hold that w has a Euclidean metric.

Let us focus on one of these relations that relates w’s points and is a
formal analog of R. Indeed, let us focus on a relation that is like this not
only in w, but in every world that is non-Euclidean—call it R’. We can think
of R’ as the twin of R. Like R, R’ enables definition of Euclidean metrics
in worlds whose points it relates. R’ relates only points in non-Euclidean
worlds, while R covers the Euclidean worlds; together, R and R’ span all of
the worlds with physical spaces that have metrics.!* Indeed, one might have

B3Let R@ be R restricted to points of @. R@ has formal properties that enable definition of
a Euclidean metric. Now, let / be any one-one correspondence between the points of @ and
the points of w. The “mirror image” of R® under f will have the same formal properties
as R@,

14T ignore worlds with two physical spaces, one Euclidean, the other non- Euclidean.
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expected the union of R and R’ to be a natural relation. But the primitive
naturalist can deny this, and claim that R is a natural relation, but neither
R’ nor RUR’ is natural. Premise (1) is false, for R only relates points from
Euclidean worlds.

I call this the “relation-splitting” approach. The natural expectation is
that a single natural relation relates points from both w and @. But the
relation-splitter denies this, claims that the relation R U R’ is not natural,
splits it into R and R’, and claims that only the first is natural.

One might have doubts about the claim that R, but not RUR’, is natural.
Natural relations, I said above, should not have “gaps”. Fragments of more
inclusive relations might seem, intuitively, to be unnatural. The subrelation
gotten by restricting being ten feet from to objects in one possible world
would be highly unnatural. Convinced by such a case, one might go on to
argue that since R is a fragment of RUR’, it can’t be natural.

In this general form, however, the objection is clearly mistaken. The prin-
ciple:

(P1) if a property or relation P is a subset of some other property or relation
P’, then P is not natural

is obviously false. For any natural binary relation we can construct a superset
by arbitrarily adding extra pairs.
We might try to modify the objection, employing instead the principle:

(P2) A proper subset of a natural property or relation is unnatural.

Unlike (P1), (P2) has some plausibility, at least if the natural properties are
construed as the most fundamental properties.!> Unfortunately, it does not
help the argument. We would need to claim that RUR’ is natural, and then
employ (P2). This, however, would blatantly beg the question against the
relation splitter.

One might instead try to modify (Px). That principle is clearly false, but
there is a sound intuition behind it. Natural relations should not be arbi-
trarily restricted, split, or fragmented. There should be no arbitrary gaps in

I3Section 3.2.1. However, notice that I do not defend (P2) in that chapter; instead, I
defend the weaker principle that conjunctions of distinct perfectly natural properties are
not perfectly natural. Keep in mind that by ‘natural’ here I mean perfectly natural. Some
fairly natural properties have even more natural subsets. For example, determinate shades
of red are subsets of redness, and yet the determinate shades seem more natural than redness,
their disjunction.
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their span across logical space. The difficulty here is to say what constitutes
an “arbitrary” restriction, split, or gap. The following terminology will let
us make an attempt.

Consider any relation R, formal property P of relations, and world .
Say that R has P at w iff the subrelation of R restricted to w’s objects has
property P. Say that R has P uniformly iff R has P at every world that
contains some objects related by R. Say that P is metrical iff there is some
distance function D such that every relation among space points that has P
suffices to define D. An example of a metrical property is the property of
being Euclidean, which is had by a relation iff its formal properties suffice
for the definition of d, over the set of objects it relates.'®

Let us recall what the relation splitter has said so far. R is uniformly
Euclidean, as is R’, although the class of worlds with points related by R is
completely disjoint from the class of worlds with points related by R’. But R
is natural, while R’ is not; this is why @, but not w, has a Euclidean space.

The criticism I want to consider invokes the following principle:

(P3) If the relevant formal properties of a relation are uniform, then any
proper subset of that relation is unnatural.

Since R and R’ are both uniformly Euclidean and never relate points that
are worldmates, RUR’ is also uniformly Euclidean. If we grant that being
Euclidean is a “relevant” property, then (P3) implies that R is unnatural,
contradicting the claim of the primitive naturalist.

Above we noted the intuition that natural properties and relations should
not be arbitrarily split. (P3) is an attempt to say when a split is arbitrary. It
says it is arbitrary to split up a relation when that relation’s relevant formal
properties do not vary from world to world. The relations that result from
such a split, says (P3), are always more unnatural than the unsplit relation.
Of course, we need an account of what formal properties of relations are
“relevant”. I will not attempt this (among other reasons, because I think
(P3) is false, provided that ‘relevant’ is not so defined as to trivialize the
principle). For present purposes I will assume that, for relations involving
space points, metrical properties are relevant properties.

16These definitions can and should be extended to apply to sets of relations. Recall that I
have simplified things by imagining that a single relation, R, enables definition of a Euclidean
metric.
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Though (P3) may represent a gallant attempt to say when a split of a
relation is arbitrary, we can argue against (P3). Imagine a “mush world”
w,,. No natural relation or system of relations that enables definition of a
distance function relates the points of w,’s space. The realist who adopts
(R1) would describe the mush world by saying that there are no facts of the
matter about the metric of its space. There are no distances at the mush
world; just “point soup”. Now, suppose there is some natural relation R
that is uniformly Euclidean.!” Of course, R relates none of w,’s points. But
we can form a new relation R’ by adding ‘tuples of points from w, , taking
care to only add ‘tuples that will keep R’ uniformly Euclidean. R’ cannot be
natural, since no natural relation enables definition of a metric for w, . But
it has a natural proper subset, namely R, and R has the same “relevant” (in
this case, metrical) formal properties as R’. This is a counterexample to (P3).

It must be admitted that this counterexample depends on a rather exotic
possibility. The defender of (P3) may reject the possibility of the mush world.
Even in the absence of a counterexample to (P3), however, I think the relation
splitter can simply reject (P3). It is no part of common sense! Moreover, (P3)
seems to be loosely based on the intuition that what makes a relation natural
is something about its formal properties. I discuss this intuition in the next
section. It is mistaken.

9.4.3 Rejecting Premise (2)

So far I have been exploring the relation-splitting method of allowing for
contingency of the metric. On this approach, the Argument Against Con-
tingency is rebutted by rejecting premise (1). Throughout, you may have
noticed, it was assumed that metrical properties of natural relations are uni-
form. For example, in the counterexample to (P3), I assumed that there was
a uniformly Euclidean natural relation, and in the overall discussion I as-
sumed that the relation R is uniformly Euclidean. Another approach, one
that I favor over relation-splitting, questions this assumption. I turn next to
this approach, which rejects premise (2) instead.

Let us forsake relation splitting, and grant premise (1). Thus R, the natu-
ral relation that is Euclidean at @, relates points of w. Indeed, let us assume

171f you deny that any natural relations among points have uniform metrical properties,
then be patient. You will agree with the rejection of premise (2) of the Argument Against
Contingency instead.
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that R relates the points of every world with a physical space.'® Premise (2)
of the Argument Against Contingency claims that R is Euclidean at w. This
claim might be defended by appeal to the following principle:

(P4) A natural relation has its relevant formal properties uniformly

‘Relevant’ is intended here in the same sense as in (P3). In particular, I assume
that being Euclidean is relevant in the case of R. Hence, (P4) implies (2).

I see no reason to accept (P4). Moreover, I think we can provide argu-
ments against it. [ will consider two examples.

It is plausible that the topological relation of betweenness among spatial
points is a natural relation. In our world, that relation presumably has a
certain property of denseness: between any two points there lies a third. But
at a world with discrete space, betweenness lacks this property. Assuming
that denseness is “relevant”, (P4) is false.

Secondly, a more abstract counterexample. Imagine the following situa-
tion that a universals theorist would describe as follows. There is an alien
natural dyadic universal U, not instantiated in our world, which has no nec-
essary (relevant) formal constraints. Think of U as being an ethereal rubber
band linking its relata; the bands can be present in any combination. In
terms of primitive naturalism, every (relevant) formal property of a certain
alien natural relation is non-uniform. The universals view can clearly admit
the possibility of this example. Primitive naturalism is intended to be the
equal of the universals view in power; surely we do not want it to preclude
this possibility. But if (P4) were true, then such an alien relation would be
impossible.

Someone might object to the first counterexample using the distinction
between rigid and nonrigid designators.!” Consider any term ¢ and object o
in world w. Intuitively, we say that ¢ rigidly designates o iff ¢ picks out o
and only o in every possible world. But this is too loose, for various reasons.
Supposing o to be some concrete possible object, say that ¢ “rigidly desig-
nates o” iff i) in any possible world containing exactly one counterpart of
o, t denotes only that object, and ii) ¢ denotes no other object in any other
world. On the other hand, if o is a property or relation that exists “from the

18Perhaps: of every world whose physical space has appropriate non- metrical (e.g. topo-
logical) structure. Let us ignore relativistic considerations.
PPhillip Bricker pressed this objection to the first counterexample.
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point of view of” every world, we may simply say that ¢ rigidly designates o
iff at every world, ¢ designates o and only o.

Consider the counterexample involving the relation betweenness. The
objector would claim that all T have established is:

(a) In the actual world, the betweenness relation is dense, but, at w, the
betweenness relation is not dense

But what I need for a counterexample to (P4) is

(b) The relation that iz fact is the betweenness relation is in fact dense, but
it is not dense at w.

(a) implies (b) iff ‘the betweenness relation’ is a rigid designator, and a de-
fender of (P4) might claim that ‘betweenness’ indeed is not a rigid designator.
At the actual world, a certain relation is the betweenness relation, but since
relations have their relevant properties uniformly, the betweenness relation
at the discrete world is a different relation.

First, I think that ‘the betweenness relation’ is a rigid designator. Consider
how one argues that a certain singular term, say, the proper name ‘Bush’, is
a rigid designator. One says: “in any possible world, if that guy [pointing
to Bush] exists, then he would be Bush; moreover, show me a possible ob-
ject properly called ‘Bush’—it must be that guy.” I think ‘the betweenness
relation’ passes the analogous test for relations. Suppose x is between y and
z, and consider any world in which three points x’, y’, and 2’ are related in
that same way. I think that x” would be between y” and z’. Similarly, it seems
convincing to me that if x” is between )’ and Z’, then x’, ', and z’ have to be
related in the same way that x, y, and z are in the actual world.

A different argument may be given against (P4) involving betweenness,
but we need some machinery from section 4.2.2. An internal relation is one
whose holding supervenes on the intrinsic nature of its relata: if it holds
between x and y, then it must hold between any duplicates of x and y, re-
spectively. An external relation is a non- internal relation that supervenes
on the intrinsic nature of the mereological sum of its relata. That is, if an
external relation holds between x and y, then it must hold between the cor-
responding parts of any duplicate of the fusion of x and y. Hence, we have
(Lewis, 1986¢, p. 62):
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(E) If R is external or internal and holds between x and y, then R must hold
between the corresponding parts of any duplicate of the mereological
sum of x and y

Notice that (E) quantifies directly over relations, 7ot names of those rela-
tions.

We will need a recombination principle for the argument. Recombina-
tion principles underlie the inference that, for example, if a cat and a dog are
possible objects, then it would be possible for there to be twenty duplicates
of each, for there to be a duplicate of the cat’s head attached to a duplicate
of the dog’s body, etc. One recombination principle, called the principle of
isolation, says that, given any possible object ¢, there is a possible world con-
taining a duplicate of ¢ and that object’s parts, but no other objects besides
those entailed by the existence and nature of those objects already mentioned
(this is principle (I12) from section 6.3.2).2°

Finally, we need a principle from section 4.2.3: every (perfectly) natural
relation is either internal or external. This principle is a straightforward con-
sequence of the definitions of ‘internal’, ‘external’, and ‘duplicate’ in terms
of naturalness.

Let us rigidly designate the relation that, at the actual world, is the be-
tweenness relation by ‘betweenness®’. Presumably, betweenness? is dense
in the actual world. And surely, it is a natural relation—the spatiotemporal
relations are our only clear examples of natural relations. (Moreover, if such
relations are not natural, then the idea in this chapter for stating metrical
realism, embodied in (R1), will not work! In section 9.2.3 I indicated how
I intend my proposal to be generalized. On this approach, the betweenness
relation is defined to be the natural relation with such and such formal prop-
erties.) Thus, betweenness® is either external or internal. Suppose that in
the actual world x is between and distinct from y and z, and let XY Z be the
fusion of x, y, and z. The principle of isolation applied to the case of XY Z
implies the existence of a possible duplicate of XY Z existing in isolation; call
that duplicate XY Z’; call the possible world at which it exists “w”. Since
XYZ'is a duplicate of XY Z, and betweenness® is either external or inter-
nal, XYZ' is made up of three distinct parts, x’, y’, and z’ where, by (E), x’
is between® y’ and z’. We are entitled to infer that x’ is between® y" and z’,
rather than x’ is between y” and z’, because of the fact that the variable ‘R’ in

20The related principle of isolation in Paull and Sider (1992) was not intended to apply
to points of space.
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(E) ranges over relations, not relation names—betweenness® is an allowable
substitution for ‘R’. Since XY Z’ exists in isolation, nothing is between@ y’
and x’; hence, betweenness® at w is not dense. (P4), therefore, is false.

I say that [ may fairly reject (P4), and also premise (2) of the Argument
Against Contingency. I may claim that R is a natural relation, and yet varies
in its metrical properties from world to world. At @ it is Euclidean, but
perhaps at w it is Riemanian instead.

I imagine a complaint: “R seems unnatural. It seems a conglomeration of
different relations all with different formal properties. For example, it has a
Euclidean subrelation of pairs of points from @, and a Riemanian subrelation
of pairs of points from w. What makes a relation natural, if not its formal
properties?”

Well, whatever makes a relation natural, formal properties cannot be
the whole story. Let S be the set of spacetime points from some possible
world. There are many bijections from § onto itself. Each such bijection
induces, for any relation defined over the members of §, an image of that
relation, a “scrambled” version of that relation. The scrambled version will,
in general, be radically different from the original. For example, if one began
with the betweenness relation, the resulting relation would in general not
be the betweenness relation. However, the scrambled relation will have the
same formal properties as the original. For example, if the original was
transitive, connected, and asymmetric, then the scrambled version will be
transitive, connected, and asymmetric. If the original enabled definition of
a Euclidean metric, then so will the scrambled version. So, take any natural
relation R. Arrive at a new relation R’ by arbitrarily scrambling R within
each possible world whose points it relates. R’ will have the same formal
properties as R, but clearly will not be a natural relation. Hence, formal
properties are not the sole determiners of naturalness.

What does make a natural relation natural? There are two answers, de-
pending on how this question is interpreted. It may be interpreted as a re-
quest for an intuitive picture of why relations are natural. The answer, then,
is that the facts make relations natural. R is natural because it corresponds to
real metrical facts involving points. This of course is no analysis; according
to (R1) metrical facts are analyzed in terms of naturalness, so an analysis of
naturalness in terms of metrical facts would be circular. But I am a primitive
naturalist, and no analysis of naturalness is ever offered by a primitive nat-
uralist. The second way to interpret the question “What makes a relation
natural” is as a request for analysis. The reply here is that there is none to
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be had. Naturalness is a primitive.

Consider the analogous situation with respect to the naturalness of the
property unit positive charge. The primitive naturalist gives no analysis of
why this property is natural. Someone might object: consider the set S that
is the property unit positive charge. Exchange one member of § with some
electron, to form a new set §’. Why isn’t the property corresponding to §’
natural? One answer is that the members of the set share no common feature;
the set is heterogeneous. This is of course no analysis, since heterogeneity
would presumably be analyzed in terms of naturalness. But do not demand
analysis from the primitive naturalist.

If we consider S and §’ in abstraction from facts about charge, then noth-
ing will tell us which is a natural property. We can point out that the members
of § share a common feature—charge—while the members of §’ do not, but
this is no analysis. In the same way, if we consider R and another relation
in abstraction from facts about metric and distance, then nothing will tell us
which is natural. For the primitive naturalist, there is a brute fact that R is
natural, and this fact is not reducible to any claim about R’s formal prop-
erties. Again, we can point out that the ‘tuples of points in R all share a
common feature, a feature involving metric and distance. But again, this is
no analysis.

The primitive naturalist, then, can escape the Argument Against Con-
tingency and account for the contingency of the metric, either by relation-
splitting, thereby rejecting premise (1), or by rejecting premise (2) (I prefer
the latter approach). Obstacles to each of these paths were presented, most
formidably in the form of (P3) and (P4), but each, I think, is false. Finally, I
argued that the primitive naturalist can feel free to claim that the naturalness
of relations is not a mere matter of those relations’ formal properties.
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A note on the type

The text is set in Sabon, designed by Jan Tschichold in 1964.
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