Vagueness, Probability, and Linguistic Representation

1. Introduction

Intuitively, vague words are words which clearly apply to certain objects, clearly
do not apply to other objects, and which have certain intermediate cases, where it is
unclear whether the term applies or not. Standard examples are scalar adjectives like
“bald”, “tall”, and “fat” and common nouns such as “heap”. Vagueness is a serious
problem for the logical analysis of language: the classical statement of this problem is the
sorites paradox. One grain of sand is clearly not a heap. It seems plausible that, if you
have something that is not a heap and you add one grain of sand to it, you still do not
have a heap. But from these two premises it follows that no amount of sand can constitute
a heap. That is, the following is a valid argument:

(1) Sorites Paradox

a. One grain of sand is not a heap.
b. If you add one grain of sand to something that is not a heap, then you still will
not have a heap.

c. No pile of sand, no matter how large, is a heap.

The problem of the sorites, in a nutshell, is that the second premise (the “inductive
premise”) is intuitively plausible, but the conclusion is not. We know that the first
premise is true (one grain is not a heap), and that the conclusion is false (heaps of sand do
exist). It follows that the inductive premise is false. But it is difficult to find an intuitively
plausible and logically satisfying theory of where the inductive premise goes wrong.

One prominent approach to the problem of the sorites is the epistemic theory
(Williamson 1994). According to this theory, meanings are precise, and the phenomena
of vagueness are the result of humans’ imperfect knowledge of the meanings of words. If
this is right, vagueness is not a logical problem, and semantics can carry along merrily,
leaving the explanation of the sorites to epistemologists and psychologists. However, a
common objection to the epistemic theory is that it requires an implausible divorce
between meaning and humans’ knowledge and use of language (e.g., Lassiter 2008). I
find this aspect of epistemicism undesirable. However, I also think that the epistemic
theory contains a crucial insight which I try to recapture in this work: vagueness is not
located in the semantic theory per se, but in the relation between human agents and the
semantic theory.

The theory of vagueness described in this paper incorporates this aspect of the
epistemic theory while also relating meaning to the linguistic knowledge and behavior of
speakers and listeners. It can be seen as a development of Lewis’ (1972) suggestion that
“languages themselves are free of vagueness but ... the linguistic conventions of a
population, or the linguistic habits of a person, select not a point but a fuzzy region in the
space of precise languages”. Lewis, like epistemic theorists, envisions a theory in which
languages are precise and the underlying logic is bivalent. The difference is that Lewis
does not endorse the epistemicist’s claim that there is a single language that is being
spoken in a given conversation. Rather, there is always a range of languages that are
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contenders for being the language of conversation, and the epistemic problem is to use
prior knowledge and context to select the most plausible candidates for being the
language of conversation.

This paper attempts to capture the spirit of Lewis’ proposal within a probabilistic
theory of semantic representation. The main aspect of the probabilistic theory of
vagueness which I will explore here is its treatment of the sorites paradox. However, one
of the most interesting aspects of the probabilistic approach, which will remain implicit in
the following discussion for reasons of space, lies in the connection it draws between
vagueness and other aspects of human cognition. There is considerable evidence from
psychology that human learning involves induction over weighted alternatives
(Tenenbaum 1999; Xu and Tenenbaum 2007) and that belief and reasoning also crucially
incorporate probabilistic information (e.g., Chater and Oaksford 2008). Sociolinguists
have long made use of probabilistic representations (Weinreich, Labov and Herzing
1968). More recent trends in theoretical linguistics suggest that grammatical knowledge
is also uncertain, and that probabilistic models are useful in linguistics as well (Yang
2002; Bod et al. 2003). The main innovation of the present work is to extend this
approach from grammar to semantic representation, and to show that a plausible solution
to the sorites paradox follows. Thus, if the theory is correct, then vagueness is not a
specifically semantic phenomenon, but a consequence of the nature of linguistic
knowledge and general principles of language learning and use.

The paper is structured as follows: section 2 describes Robert Stalnaker’s theory
of assertion and his argument for a unified possible-worlds/languages model of belief and
assertion. A probabilistic modification of this model is described and illustrated in section
3. In section 4 the model is applied to the interpretation and representation of vague
terms. Finally, in section 5 I show that this model gives us an explanation of the sorites
paradox which explains not only why the paradox is invalid, but also why it seems so
compelling.

2. Metalinguistic assertion and linguistic belief

In Stalnaker’s (1978) theory of assertion, the role of an assertion is to eliminate
certain possibilities from the common ground, which is construed as a set of worlds
considered by the conversational participants as live possibilities for how the actual world
might be. Suppose you don’t know whether it is raining outside. If a reliable source tells
you, “It is raining”, you will normally change your beliefs so that you no longer consider
worlds in which it is not raining to be candidates for being the actual world.

Stalnaker’s theory of assertion is not restricted to modeling update of non-
linguistic beliefs, however. Among the assumptions that speakers bring to a conversation
are beliefs about the linguistic context, such as a prior theory about what kinds of sounds
are likely to be useful in communicating information to a given audience. As Stalnaker
(1978, 2004) and Barker (2002) show, in addition to eliminating possible ways the non-
linguistic world might be from the common ground, assertions may also eliminate
possible languages from the common ground.

Suppose someone asks you, ‘What is an optometrist?” Imagine that your
interlocutor’s state of knowledge is such that there are two sets of possibilities. Let L,
designate all languages in which opfometrist and eye doctor are mapped to the same
concept or set of individuals (whichever your preferred semantic theory treats). L,
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designates all languages in which optometrist and plumber are mapped to the same
concept or set of individuals. In this context, the reply ‘An optometrist is an eye doctor’
serves to eliminate L, from the common ground. The net effect is to inform the
linguistically uncertain interlocutor that, in the current language of conversation, the
sequence of sounds opfometrist is not an appropriate way to communicate any concept
other than EYE DOCTOR. Importantly, An optometrist is an eye doctor gives no
information about the non-linguistic world, but rather functions as an instruction to
interpret a certain noise in a certain way.

The upshot of Stalnaker’s approach to metalinguistic discourse, then, is a unified
model of assertion using two parallel but formally similar dimensions of possible
languages and possible worlds.

3. Probabilistic beliefs, assertion and inference

In section 2 we saw evidence from the phenomenon of metalinguistic assertion
that linguistic behavior depends on and makes reference to speakers’ and listeners’
linguistic beliefs, and potentially affects their subsequent linguistic behavior. On the
other hand, there is considerable psychological and linguistic evidence that beliefs in
general and linguistic representations in particular are probabilistic in nature, as
mentioned above. We can integrate these insights by representing an agent’s beliefs as a
set of ordered pairs each consisting of a world and a real number in the range [0,1],
subject to the condition that the sum of the probabilities attached to all worlds in the
agent’s belief-set is 1. This model is readily implemented in Kripke semantics and is
logically well-behaved: see Halpern 1997 for an axiomatization with soundness and
completeness proofs.

Suppose that an agent A considers four worlds possible in some context C.

(2) In w; it is snowing and John is a plumber.
In w; it is not snowing and John is a plumber.
In w3 it is snowing and John is an eye doctor.
In wy it is not snowing and John is an eye doctor.

A’s belief-set might look like (3):
3) Ba = {<wy, 1>, <wy, 4>, <ws, 3>, <wg, 2>}

We can calculate A’s subjective probability of any proposition p by summing the
probabilities of all worlds in which p is true. So, for example, pa(it is snowing) = pa(w)
+ pa(w3) = 0.4. Similarly, pa(John is a plumber) = pa(w;) + pa(w2) = 0.5.

Possible languages can be treated in similar fashion as probability distributions
over possible languages. On this approach, a context set consists of non-linguistic beliefs
— modeled as a set of possible world-probability pairs — and metalinguistic beliefs —
modeled as a set of possible language-probability pairs.

4) Possible languages are functions from utterances to model-theoretic objects.
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For example, suppose that an agent A considers four languages to be viable candidates
for being the actual language of conversation in the context given above.

(%) In L, ‘optometrist’ and ‘plumber’ mean the same, and ‘I’ picks out the speaker.
In L, ‘optometrist’ and ‘eye doctor’ mean the same, and ‘I’ picks out the speaker.
In L3, ‘optometrist’ and ‘plumber’ mean the same, and ‘I’ picks out the listener.
In L4, ‘optometrist’ and ‘eye doctor’ mean the same, and ‘I’ picks out the listener.

The revised representation of A’s belief-state is a tuple of non-linguistic and linguistic
beliefs, as in (3'):

(3" Ba= <{<W1, A=, <wn, 4>, <ws, 3>, <wy, .2>},
{<Lla '3>9 <L2a '4>9 <L3a '1>9 <L4a 2>}>

Again we calculate the subjective probability of an interpretation by summing the
probabilities of all languages which yield that interpretation. So, pa(‘optometrist’ =
‘plumber’) = pa(L;) + pa(L3) = .4.

Now suppose that A comes to learn that John is an eye doctor. This will affect
non-linguistic beliefs, but not linguistic beliefs; and so (5) will be updated so that the
probability of all worlds in which John is not an eye doctor is 0.'

(6) BA = <{<Wla 0>3 <wa, 0>3 <ws, '6>9 <Wg, 4>}9
{<Ly, .3>, <L,, 4>, <L, .1>, <L4, .2>}>

Now suppose John says to A:
(7) I am an optometrist.

In L;, (7) means that John is a plumber. In L, (7) means that John is an eye doctor. In Ls,
(7) means that A is a plumber; in L4, (7) means that A is an eye doctor. If A is neither an
eye doctor nor a plumber, and he assumes that John is well-informed and cooperative, he
will eliminate L3 and L4 from consideration. This is because L3 and L4 entail that John is
uttering a known falsehood. But in addition, A can eliminate L; from his belief-set,
because he knows that John is an eye-doctor and not a plumber, and accepting L; would
mean that John is uttering a known falsehood. As a result, (7) — which is on face a
statement about the world — does not add non-linguistic information, but it allows A to
infer information about the language of conversation. So, after (7) is uttered, A’s belief-
set will be as in (8):

(8) BA = <{<W3a '4>9 <W4a '6>}9{<L25 1>}>

! The probabilities I give for ws and wy4 in (6) should technically be derived using Bayes’ theorem, but it is
not necessary to go into this issue for this example: since half the worlds have been eliminated and the fact
that John is an eye doctor is irrelevant to the choice between w; and wy, we simply double the prior
probabilities of these worlds.
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This simple example illustrates the interaction of non-linguistic and linguistic information
in interpretation and belief update.

4. Representing vague terms

Toy examples like the one given above obscure the fact that the domain of a
priori possible states of the world is extremely large, perhaps infinite. If any function that
satisfies (4) counts as a possible language, then possible languages are similar to possible
worlds in this respect as well: there is a very large number of possible languages, many of
which are minimally different from each other. Normally most of these will be out of
contentions, but even native speakers consider various interpretive options as viable in
ordinary situations.

Suppose that a speaker A utters some noise U, and an interpreter B takes U to
pick out some portion of an ontologically continuous object or property (such as height or
the color spectrum). U could in principle designate an unlimited number of distinct
properties P; ... P, each of which divides the continuum in a different way. Each of these
properties, in turn, can be the value of U in a range of distinct possible languages, which
can be as similar as you like except for the value of U. So, for example, there are possible
languages in which the dividing line between ‘tall’ and ‘not tall’ is 6’0, 6’1, 6’1.17,
6’1.11”, and so on.

The intuitive idea behind the present approach is that vagueness consists in this
feature of linguistic knowledge: in any given interaction there is a range of possible
languages that we might be speaking, and thus a range of possible meanings for a vague
expression like ‘tall” that might be relevant in a context. But not all interpretations of an
utterance are equally plausible: when a predicate is vague there is no point at which a
possible language L, yields a plausible interpretation of “tall”, and a neighboring possible
language L, which resolves “tall” in a similar fashion yields an implausible
interpretation. Rather, the plausibility of neighboring interpretive theories changes
gradually.

This idea can be explicated in the Stalnakerian possible-languages model as
follows. As above, the second coordinate of an agent’s belief-set is a set of pairs of a
possible language and a real number in the range [0,1]. We extract from the agent’s
belief-set the representation of an utterance in the following way. Let PL be the set of
possible languages, whose members are L;, L,, ... L,. As usual, D, is the set of possible
objects whose members are 01, 02, ... 0, For simplicity’s sake we restrict attention to
model-theoretic objects of type <e,t> (e.g. common nouns and scalar adjectives),
although the definition could easily be modified to allow objects of arbitrary semantic

type.
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) The lexical representation LR, 4 of an utterance u according to an agent A is a set
of pairs <om, d> of a possible object o, € De and a real number d in the range
[0,1].

a. <om, d> € LR, 41ff d = 21 pr [pa(L): (L(u))(0m)=1]

b. If <om, d> ¢ LR, 4 then the subjective probability according to A that u
applies to oy is d.

c. I will henceforth abbreviate clause (9b) as: pa(u(om)) = d.

((9¢) is an abbreviation for readability’s sake: taken literally, it would require that
an utterance take a model-theoretic object as an argument, which is not possible in
since utterances are not functions.)

Clause (9a) stipulates that A’s subjective probability that an utterance u applies to
an object oy, is equal to the sum of the probabilities of all possible languages in A’s
belief-set in which the value of u applied to on, returns 1. In this way, A’s probabilistic
belief-set determines the probabilistic lexical representation of any possible utterance u.
We can use (9) to translate between possible-languages talk and talk of lexical
representations without loss of information. (A similar definition would do the same for
possible worlds and propositions in our probabilistic model.)

As an example, suppose that the lexical representation of tall for a particular
speaker A, LR, 4 has the following form. A considers possible these resolutions of tall:
5’57, 5°6”, ... 6’5 (spaced at 1” to simplify the model). Letting italics represent
utterances as above and boldface indicate model-theoretic objects, we’ll call these tally,
tall, ... tallyz. Each resolution of tal/l denotes (the characteristic function of) a set of
individuals who the conditions abbreviated as “Threshold”. For example, [[tall;]] = {x:
x’s height > 5°5”}; [[tall]] = {x: x’s height > 5°6”}; and so forth. The probability
distribution in the bottom row of (10) assigns a probability in the range [0,1] to each
resolution of tall. For example, the fifth column of (10) is read: “The probability that the
denotation of tall is {x: x’s height is at least 5’8} is 0.03”.

( 1 0) Name talll ta112 tall3 tall4 talls tall6 tall7 talls ta119 tallw talll 1 talll 2 talll 3
Threshold 5’5 |56 |57 |58 59 5’10 | 5’11 |60 | 6’1 | 62 63 6’4 6’5
pa([fall=tall) |0 |0 |0l .03 |.09 |.14 |23 |23 |14 |09 |.03 |0l |0

As in (9), for any utterance U which denotes a set of individuals, the probability
that x is U is the sum of the probabilities of all resolutions of which x is an element.

Because all available resolutions of tall are upward monotonic it is simple to
calculate to calculate the probability that an individual of arbitrary height will count as
tall. Let’s consider a series of 13 individuals in this height range, spaced at 1°, called x;,
X2, ... X13. Using (10) we calculate for each individual x, the probability that x, is tall by
summing the probability that [[zall]]=tall, for all m < n. For example, p(ta/l(xs)) = Zi-1_s
p([[tall]]=tall,) = 0+0+.01+.03+.09 = .13. The table in (11) gives the values of tall(x,) for
a representative sample of individuals of various heights, using (9) and (10).
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(11)Name | x; X5 X3 X4 X5 Xg X7 Xg X9 X1 X1 X12 Xi3

Height 5’5 |56 57 5’8 59 5’10 | 5’11 |60 |61 [ 62 |63 |64 |65

plallx,)) |0 |0 0 o4 [13 [27 |5 73 [ 87 [96 [99 |1 1

As (11) shows, the upward monotonicity of all resolutions of ta// in (10) explains
the intuitive fact that the probability of an individual x, being tall increases gradually the
greater X,’s height is. Graphically, (11) yields the figure in (12):

(12)

Tall

/0.27
0.2 /
0.1 0.13
M
0 o : T - - - - - - - -
55 5% 57 5'8 59 510 511 60 61 62 63 64 6'5
Height

Since we are looking at increments of 17, (12) only approximates a smooth curve.
We can increase the resolution of (10) and (11) by considering more intermediate cases
while maintaining the shape of the curve. I suggest that the representation of ta// (for our
agent A) can be described by a function f'which yields (12) when we consider only cases
at intervals of 17, but yields values heights at any arbitrary interval. Thus, in the limiting
case in which we consider infinitesimally small intervals (i.e., a dense scale of heights),
the curve described by f will be smooth. Essentially, I am suggesting that the
distinguishing characteristic of vague predicates like tal/l is that their lexical
representations are described by continuous probability functions.

S. The Sorites Paradox

The original motivation for our discussion was the sorites paradox, which is
restated, substituting tall for heap, in (13). As above, x; is 5°5”, and x;3 is 6’57, and
boldface indicates model-theoretic objects while italics indicate utterances. The use of
boldface tall in (13) makes explicit the implicit assumption in the original statement of
the sorites paradox that the words in question denote unique model-theoretic objects.

(13) a. —(tall(x,))
b. Vn [ (=(tall(x,)) — (=(tall(xy:1)))] (equivalently,
---------------- =dn (-(tall(x,)) & (tall(xq+1))])
c. Vn [ (tall(x,))]
d. .. —|tall(x13)

Within the probabilistic theory of lexical representation that I have sketched. (13)
could be restated in two ways. Suppose first that we consider the intended interpretation
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of tall as a model-theoretic object. Tall in itself does not represent any object in my
system: a subscript is needed to indicate which possible language (function from
utterances to model-theoretic objects) tall, was generated by. So, if tall is assigned a
value in L3y then Lj4(tall) will be written tallss. On this interpretation the paradox
appears as in (14):

(14)  a. —(talls(x1))
b. Vn [ (=(tallss(Xs)) — (= (tallzs(xn:1)))]  (equivalently,
---------------- —dn (—(tallzy(x,)) & (tallzg(Xn+1))])
¢. Vn [-(tallz4(xn))]
" —1tall34(x13)

Since possible languages are perfectly precise, the inductive premise is plainly false: the
bivalence of the semantic metalanguage guarantees that there is a precise cut-off between
tall;4 and —tallz4, and so the conclusion does not follow and the paradox does not arise.

Suppose now we rewrite the paradox using utterances in place of model-theoretic
objects. Tall is an utterance, and it is interpreted by some possible language L, as a
semantic object tall,. Crucially, fall is not in itself a model-theoretic object. If we attempt
to restate the paradox using fall in the place of tall, we get (15).

(15) a. =(tall(xy))
b. Vn [ (=(tall(xn)) = (= (tall(xn+1)))]
¢. Vi [~(tall(x,))]
. =tall(X13)

None of the clauses in (15) are syntactically or semantically well-formed within the
theory I have introduced. I have occasionally spoken of “the probability that u applies to
o (according to A)”, but this was explicitly introduced in (9a) as an abbreviatory
convention: If <oy, d> € LR, 4, we may say that pa(u(om)) = d. However, the bare claim
that x, is tall is meaningless within this theory: we can only say that the utterance tall
applies to x, with some probability d.

Suppose we rewrite the paradox using probabilities, as the present approach
demands. It seems plausible that “x, is not tall” should be expressed as “pa(fall(x;)) = 0.
If we accept this, the restatement of the sorites paradox is:

(15)  a. patali(x))) = 0
b. Vn [pa((tall(xn)) = 0) = pa((tall(xy1)) = 0)]

c. Vn [pa(tall(xy)) = 0]
~opa(tall(x13)) =0

(15) is logically valid, but premise (b) is much less intuitively plausible than the original
inductive premise (13b). There is simply no reason to assume that, if the probability that
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something is tall is 0, the probability that an adjacent item is zall must also be O (rather
than some small but non-zero amount).

Much more plausible is the probabilistic translation of the existential variant of
the inductive premise, “—3n[(-(tall(x,)) — (= (tall(x,+1)))]”. A reasonable translation is

(16):
(16)  —=3An[pa(tall(xy)) = 0 & pa(tall(xn+1)) = 1]

But (16) is not equivalent to (15b) in the current system: denying that there is a point at
which the probability function jumps from to 1 is not the same as denying that it ever
increases from 0. (16) is true for zall and any other vague predicate, but this creates no
problem: (16) is, if anything, just a necessary condition for a predicate’s being vague.

Fara (2000) suggests that a convincing theory of the sorites, if it denies the
inductive premise, must answer three separate questions (slightly modified from Fara
2000).

1. The Semantic Question: If (a) is not true, then must this classical equivalent

of its negation, the “sharp boundaries” claim, be true?

The “sharp boundaries” claim: 3n [—tall(x,) & tall(X,:1)]

(a) If the sharp boundaries claim is true, how is its truth compatible with the fact

that vague predicates have borderline cases? For the sharp boundaries claim

seems to deny just that.

(b) If the sharp boundaries claim is not true, then given that a classical equivalent

of its negation is not true either, what revision of classical logic and semantics

must be made to accommodate that fact?

2. The Epistemological Question: If “dn [-tall(x,) & tall(x,:1)]” is not true,

why are we unable to say which one (or more) of its instances is not true—even

when all the heights of the possible values of “x,” are known?

3. The Psychological Question: If inductive premise is not true, why were we so

inclined to accept it in the first place? In other words, what is it about vague

predicates that makes them seem tolerant, and hence boundaryless to us?

Let’s address these questions in turn.

1. The semantic question.

(a) If we replace tall in Fara’s formulation of the “sharp boundaries” claim
by a model-theoretic object acceptable in our system such as tall,, the claim is true. This
is not problematic because our original intuition that the sharp boundaries claim is false,
and that the universal sorites premise is true, was not an intuition about some model-
theoretic object tall, but an intuition about the meaning of the word (utterance) tall.

(b) If we replace tall in Fara’s formulation of the “sharp boundaries” claim
by an utterance such as fal/l, making appropriate adjustments (as in (16)), the “sharp
boundaries” claim is false. However, no revision of classical logic and semantics is
required to explain these facts; rather, this result follows from the fact that the utterance
tall does not denote a unique object, but denotes various objects with differing
probabilities. The semantic metalanguage is nevertheless classical.

2. The epistemological question. “In [-tall(x,) & tall(x,:1)]” is not well-formed
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in the present theory. If we substitute tall,, as in “In [—tally(x,) & tally(X,:1)]” we can
identify which n satisfies this formula given a complete specification of the language L,
or of the extension of tall,. If we consider the sharp boundaries claim substituting the
utterance fall, our language does not permit us to ask which n satisfies “dn [-tall(x,) &
tall(xn+1)]”, because this sentence is not well-formed. The approximation of this formula
in the present language would be the negation of (16), In[pa(tall(x,)) = 0 & pa(tall(Xni1))
= 1]. This is, of course, false of any vague predicate.

3. The psychological question. I suggest that we are inclined to accept the
inductive premise because we interpret it as a claim about words/utterances rather than
about model-theoretic objects (which are probably not accessible to introspection
anyway, like most grammatical objects). Speakers know that, given a pair of very similar
objects, vague words like tal/l will not apply to one with probability 0 and to the other
with probability 1. There is of course much more to be said here: in particular, the
relationship between probability of application and assertibility needs clarification.
Nevertheless, the present theory yields a plausible approach to Fara’s psychological
question which seems to me to deserve serious consideration.

6. Conclusion

The theory of vagueness described here has an important advantage over many
competitors: it stipulates no special semantic apparatus for vague terms, nor does it rely
on the claim that the meanings of words are defined independent of speakers’ knowledge
of language. Rather, the present theory relies on general and independently motivated
properties of language use and human cognition, motivated by philosophical concerns,
linguistic data, and evidence that probability plays a role in the representation of
linguistic and non-linguistic knowledge. The model is readily implemented in
probabilistic modal logic, and yields an account of the lexical representation of vague
words. The theory forces us to reinterpret the traditional sorites paradox in one two ways.
On one of these the denial of the inductive premise is harmless, and on the other the
inductive premise is no longer plausible. Finally, these results are explanatory with
respect to Fara’s (2000) three questions for an account of the sorites which denies the
inductive premise.
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