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Abstract. We study product adoption in the context of a cryptocurrency market. Cryp-
tocurrencies are subject to network effects and speculative investments, which are not part
of standard models of product diffusion. To explore this unique setting, we marry models
of stochastic bubbles and the standard model of product diffusion. A rational bubble is
raised by speculative investors seeking short-term gains. We find that a bubble accelerates
the adoption, which can help explain the fast diffusion of bitcoin. There are reinforcing
interactions between the speculative investors and regular users of currency, which can
make it easier to form a bubble (compared with a setting without regular users). Our
findings suggest how bubbles may help to market products. We also provide conditions
under which bubbles may unravel.
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1. Introduction

Currencies have been utilized for millennia as me-
diums of exchange in economic transactions. Gov-
ernments have historically marketed new currencies
to help facilitate trade in their economies. The most
recent major currency launched by a government in-
stitution was the euro in 1999. Recently, even non-
government agents are able to market new currencies
in digital formats. Since bitcoin emerged in 2009, there
have been more than 1,600 cryptocurrencies intro-
duced." This research studies product diffusion in the
context of a new cryptocurrency.

Animportant feature of a cryptocurrency is that it is
particularly susceptible to speculative price bubbles,
caused by investors who exploit currency exchange
for speculative gains. Speculative beliefs of investors,
very often detached from the fundamental value of a
currency, can drastically affect the price that non-
investors, the users, pay to utilize the currency as a
medium of exchange. Unlike a traditional currency,
for which the government can manipulate the supply
to combat bubbles, the supply of a cryptocurrency is
typically set to follow a predetermined path, thereby
making it more prone to price bubbles. A second im-
portant feature of a currency is its network externality. A
user’s benefit from adoption depends on the number
of other users with whom to exchange. The symbiotic
relationship between this network effect and specu-
lative incentives implies adoption dynamics that are
different than other new products (e.g. Bass 1969). In
light of this relationship, we ask, how does the presence
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of investors, who are interested in speculative returns,
affect the diffusion of a new currency? And how does the
adoption by users affect the creation of speculative price bubbles?

These questions are connected to the recent and
heated attention around bitcoin, especially in the
years 2013 and 2017, which witnessed surges in bit-
coin price. It is tempting to attribute the price surges
to overoptimistic expectation of growth in bitcoin
usage. But we entertain the reverse mechanism by
asking whether the bubbles may have contributed to
growth of bitcoin usage. Indeed, absent a formal-
ized model, it is hard to answer this question. On one
hand, speculative investors holding bitcoins may have
weakened the transactional role of bitcoins, reducing
users’ benefit of adoption. On the other hand, abubble
could boost adoption by virtue of the network effects
spurred by investors.

Our formalization starts by considering the de-
mand for currency speculation by investors only. This
benchmark illustrates conditions for which bubbles
can sustain without users. Investors decide whether
to participate in the currency market based on ex-
pectations about tomorrow’s price of the currency.
Their expectations are rational, meaning that they are
consistent with the realization of tomorrow’s price.
Investors also rationally expect crashes—events where
the price drops to zero. In other words, our analysis
focuses on fully rational investors who seek out short-
term gains. Werefrain from adding behavioral factors
(such as emotional responses or fears) to examine the
most demanding environment for bubbles to form.
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Without behavioral factors, the key requirement in
the formation of bubbles is investor confidence (Weil
1987). A product can be valued above its fundamental
value only if there is a minimum degree of confidence
among agents that the currency will be no less valuable
in the future, which, if fails to happen, implies a crash.

Next, we introduce currency adoption by users
who demand currency as a medium of exchange and
have no desire for speculative returns. The simulta-
neous presence of users and investors implies their
interdependence on the equilibrium price path of the
currency. Specifically, users must take into account
the additional network externality implied by in-
vestors, who accept and provide liquidity for the
currency. At the same time, investors take into ac-
count users” demand for currency as a medium of
exchange as it affects the price tomorrow and sub-
sequently the speculative return. Our model formally
accounts for this interdependent demand and allows
us to discern between the currency’s speculative value
and its fundamental value. The currency’s fundamental
value is defined as its price when no speculative in-
vestors participate in the market. Investors can drive
up the price beyond this value, generating speculative
value, in the form of a price bubble. A bubble may
burst—dropping the price to the fundamental value.

We establish two results. First, the adoption of a
currency is accelerated by the bubble generated by
speculative investors. The literature on product dif-
fusion has focused on products without financial or
investment value (Bass 1969). Our model demon-
strates that the price bubbles induce faster adoption
rates than without investors. This result has impli-
cations for any government or nongovernment agent
whose objective is to induce diffusion of a currency.
Specifically, it suggests that opening up the currency
to investors at its launch can help to achieve adoption
goals. Indeed, it is worthwhile to note that the Eu-
ropean Monetary Union initially launched the euro in
1999 only to investors, before rolling it out as a
physical currency in 2002 (see Wikipedia 2020). Our
theory provides a rationale for such a launch strategy.

Our second result states that the presence of users
relaxes the conditions for a bubble to form and grow.
Specifically, we show that the level of investor con-
fidence needed to sustain a bubble decreases when
there is more fundamental demand from users. In-
tuitively, the relaxation comes from an increased
expectation in the currency’s future fundamental value
due to user adoption. What is interesting, however, is
that even in the case where investing in the funda-
mental value provides zero expected return,” we show
that such relaxation still holds. This result is due
precisely to the reinforcing interplay between in-
vestors and users, which raises an investor’s expected

return beyond the return from investing in funda-
mental value.

These effects may help us understand the path of
bitcoin prices, which is shown in Figure 1. Consider
the steep ascent, around November 2013, when the
Shared Coin service was offered publicly for free. This
service offered anonymity in transactions by mixing
cryptocurrency funds to obscure the trail back to a
fund’s original source (Athey et al. 2016). Arguably,
this new service increased the potential user base for
bitcoin. Through the lens of our model, the price
volatility starting in late 2013 can be explained in a
completely rational way by the relaxed confidence
requirement to trigger a bubble. In other words, as
Shared Coin attracted more users, the necessary confi-
dence for bubbles had been relaxed, permitting easier
conditions for speculative participation. By the end of
2015, the price stabilized around $250, which is greater
than the price before Shared Coin’s introduction. This,
according to our model, would be reflective of the
increased fundamental value of bitcoin as a medium
of exchange.’

The above story is not without limits, however.
A rational bubble can unravel, which would negate
the participation of investors and, consequently, any
user—investor interaction. Specifically, as the price
in a bubble grows, investors’ confidence (i.e., ex-
pectation of tomorrow’s price) must also grow for
the expected return to stay nonnegative. A bubble
becomes unsustainable at some point if it requires
a level of confidence so high that is infeasible given
the possible demand and supply for currency to-
morrow. As early-period investors rationally antici-
pate this lack of sustainability, they refuse to par-
ticipate and the bubble unravels. We find that a key
moderator for the existence of bubbles is the financial
role of investors relative to their role in adoption.

Figure 1. (Color online) Bitcoin Price from April 2013 to
May 2015
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When investors have a large financial capacity to
drive up today’s price relative to the network exter-
nality they exert on adoption, bubbles are easier to
unravel. In such cases, even those bubbles that do not
unravel turn out to be likely to crash early on, before
they grow to significant sizes. In fact, with model
primitives realistic to the bitcoin’s history, a bubble
of any significance is almost impossible in a setting
without users (or where investors exert little network
externality on users).

Our work combines the product diffusion litera-
ture in marketing with the currency formation and
asset bubble literature in macrofinance. In marketing,
starting with Bass (1969), the product diffusion liter-
ature examines the path of consumer adoption fol-
lowing the introduction of an innovative product.
Subsequent work augments the classic work of Bass
(1969) to include imitators and influencers (Steffens
and Murthy 1992, Van den Bulte and Joshi 2007).
Much of that prior work implicitly assumes network
externalities where the probability that a user adopts
depends on the latest adopter population. Network
externalities are a key property of currency and are an
essential aspect of our main effects. There has also
been great interest in marketing on the empirical
evaluation of diffusion models and on network ex-
ternalities (e.g., Bass et al. 1994, Bronnenberg and
Mela 2004, Garber et al. 2004, Shriver 2015). How-
ever, neither the theory nor the empirical literature
has explored the role of price bubbles.

Within the finance literature, there are several ground-
laying theory works on asset bubbles. Blanchard (1979)
first pointed out that bubbles do not necessarily in-
dicate irrational behaviors—speculative bubbles fol-
lowed by market crashes can be consistent with the
assumption of rational expectations. Tirole (1982,
1985) showed that under rational expectation, short-
term investors (instead of infinitely lived agents) are
necessary for sustaining speculative detachment from
fundamental values. As a result, our model features
investors seeking short-term gains. Tirole (1982, 1985)
considered only deterministic models. Weil (1987)
extended the analysis to stochastic bubbles with the
possibility of crashes. In doing so, he introduced the
concept of confidence: a bubble can exist only if there
is enough confidence that it will persist (not crash).
Following his work, we focus on evaluating how the
confidence level required for a bubble to exist is af-
fected by the presence of user adoption.

Since then, there have been more studies exploring
factors behind the formation of bubbles. While largely
maintaining the assumption of rational expectations,
these studies focus on various deviations from perfect
markets in the form of market frictions. These include
asymmetric information (Allen and Gorton 1993), the
inability of arbitrageurs to synchronize selling strategies

(Abreu and Brunnermeier 2003), risk aversion (Branch
and Evans 2011), and portfolio constraints (Hugonnier
2012). Our objective is not to provide another expla-
nation of bubbles, per se, but rather to understand the
interplay between speculative incentives and product
adoption, or, put more broadly, the mutual impact be-
tween investors and users.

2. The Market for Currency
The demand for currency in our model comes from
two sources: investors and users. Investors demand
currency on the expectation that they can sell it in the
future for a speculative gain. Users demand currency
to conduct transactions with others. Users can be
interpreted as merchants and customers exchanging
goods and services. We start by examining the de-
mand for currency by investors only. By doing so, we
illustrate how a currency bubble can survive from
purely speculative demand. We then incorporate user
demand for the full model to capture how these two
sources of currency demand interact. Later, in Section 3,
we derive equilibrium properties of the full model.
We compare the bubbly and nonbubbly equilibria in
the full model to analyze the effect of a bubble on
adoption. We compare the bubbly equilibria in the
full model and in the investor-only model to analyze
the effect of user adoption on bubble formation.
Before detailing the model, it is useful to point out
that we separate the roles of investors and users as a
way to isolate the different mechanisms (speculative
investment and transactional usage) and see how they
interact. In reality, an agent may assume both roles.
Our model does not forbid such a view, as long as the
agent keeps separate accounts for transactional and
investment purposes. Modeling the portfolio decision
(how much to allocate across investments and transac-
tions), however, is beyond the scope of this paper.

2.1. Investor Only

There are T discrete periods. Inevery periodt = 1,...,T,
an investor is endowed with y dollars. She may invest
in either the coins or an outside option. For simplicity,
assume that the outside option provides an interest
rate r = 0.* Let p; denote the price of a coin in period t.
A risk-neutral investor’ decides whether to buy coins
in period t based on the belief about the next period’s
price, E(pi+1). We parameterize the belief in the fol-
lowing way:

L
pt+1 = {Otwt

In the investor’s belief, w; represents the probability
that a positive price will sustainin t + 1, and L; > 0 is
the maximum possible price level in period t + 1. Both
w; and L; are determined by rational expectation,

with probability wy,

with probability 1 — wy. M
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which we will make clear below when deriving the
equilibrium. This specification of investor belief is
motivated by a discretization of the more flexible
beta distribution: pyq ~ Lt - Beta(ay, 1/a¢), where a
larger a; puts more probability on the larger values
in [0, L].°

The single parameter w; captures the level of in-
vestor confidence in the coin’s price next period. A
larger value of w; simultaneously implies a stronger
belief that a crash will not happen tomorrow and a
higher expected price tomorrow: E(pt+1) = Liw?. The
notion of investor confidence is borrowed from Weil
(1987), who shows how currency bubbles can emerge
in an overlapping generations model similar to ours.”

Specifically, an investor in period ¢ is willing to buy
coins at price p; only if the expected return satisfies
% > 1, or equivalently, %wtz > 1. This describes the

behavior of investors, who are price takers. Given a
price py, if confidence w; is such that the expected
return is larger than 1, then each investor’s demand
for coins is equal to y/p; > 0. If the expected return is
smaller than 1, the demand is zero.

We suppose that there is a supply of coins A; for
period t. In what follows, we assume that the supply is
increasing over time (i.e., no coins are destroyed). Let
N > 0 be the total mass of investors. Let n; < N be the
mass of investors that buy coins in period t. The
remaining N — 7; do not buy. Then, for the market to
clear, we require the condition

ﬂ = At.
Pt

The highest possible price level for period t, L,
happens when every investor demands coins, so

I~ A,
Li '

or simply L;_1 = yN/A;. For any p; € (0, L;—1), we must

have some investors buying coins while some others

do not buy (i.e., 0 <n; < N).® This requires inves-

tors to be indifferent between buying the coins and

buying the outside good; the expected return must
be 1:

—w?=1. )

This equality bears the same spirit as the arbitrage-
free condition that underlies the efficient market
hypothesis in finance.”

Throughout this paper, we employ the notion of
rational expectations to compare outcomes across various
settings. This requires investors to be correct about to-
morrow’s price in equilibrium. In other words, prices

are realized exactly according to investors’ beliefs in
equilibrium. So, as long as the bubble is sustained
(i.e., a crash has not happened), we have

Pt+1 = Ly,

which, together with equality in (2), implies the fol-
lowing recursive relationship:

_ A
W1 = A Wt. (3)

This equation characterizes the evolution of inves-
tor’s confidence in equilibrium. One obvious confi-
dence path is w; = 0 for all ¢, which implies p; = 0 for
all t. This path actually corresponds to the nonbubbly
equilibrium. In what follows, we shall focus on in-
terior equilibria in which w; € (0,1), and therefore a
crash remains a meaningful, but uncertain, possibil-
ity. What we have characterized so far, a bubbly
equilibrium, signifies a realized event in which in-
vestors’ demand sustains a positive price from period
to period. The price path is supported by demand
from investors, who rationally expect such a price
path as well as the risk of crash. We formally define a
bubbly equilibrium as follows.

Definition 1. Given y, N, and {A;}_,, a bubbly equilib-
rium is a sequence {w;, nt,pt}le with w; € (0,1) that
satisfies the following conditions for t = 1,..., T: (i) the
market clears, yn;/p; = Ay, (ii) the expected return is
equal to 1, Liw?/p; = 1; and (iii) price pt.1 is rationally
expected as w;L;.

It is important to note that a bubbly equilibrium is
defined conditional on the bubble being sustained.
When we say that {p;}]_, is part of a bubbly equilib-
rium, we mean that these will be the realized prices as
long as the bubble does not crash. Itis understood that
in every period ¢, there is probability 1 — w;—; that the
price ends up being 0 (the bubble bursts). When such
an event happens, the prices and investor sizes will be
zero thereafter.

Equation (3) says that a bubbly equilibrium, if it
exists, is unique for any given w; under our model
specifications.'” To ensure the existence of a bubbly
equilibrium, we must specify two boundary condi-
tions. First, for a finite T, we must assume that the
investors in period T + 1 are guaranteed an “exit in-
terest rate” equal to 1. This assumption effectively
eliminates the “end-period effect” because the in-
vestors in the last period need not form a belief on
tomorrow’s price. We allow T = oo to capture the
situation of no such exit interest rate. Second, we must
keep the value of w; meaningful. If A; is strictly in-
creasing over time and we mechanically follow Equa-
tion (3), then w; is strictly increasing over time too,
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and may become larger than 1 in some period f, which
would imply the unraveling of the candidate bubble
backward from t. Given any T, we can ensure that
w1, ...,wr < 1by starting with a sufficiently small w;.
In other words, there is an upper bound, Q(T), such
that the bubbly equilibrium exists for T iff w; < O(T).
Itis not difficult to see that Q(T) is decreasing in T. The
following lemma characterizes ()(co) under a specific
supply path that we focus on later.

Lemma 1. In the investor-only setting with Ay =1—f,
B €(0,1), a bubbly equilibrium exists for T = oo iff

w1 < (1= 12,0 -89 = Qo).

For any T < oo, the above inequality becomes a sufficient
condition for a bubbly equilibrium to exist.

The intuition behind this upper bound is that a high
w1 leads to a high price being rationally expected
in the second period, which makes coins unattractive
to the second-period investors. The same logic applies to
later periods. If w; is so high that the investors in
alater period are unwilling to buy coins even with full
confidence, then the bubble unravels.

In Figure 2, we numerically compute the upper
bound OX(T) for T = oo (and T = 5 for comparison). For
reasonably large values of f, such as > 0.5, this
upper bound is virtually zero. In such cases, even if a
bubbly equilibrium may exist, it is most likely to crash
in the early periods. In fact, the proof of the lemma (in
Appendix B) shows that ()(c0) is positive for g < 0.5
and zero for > 0.5. As we will discuss later, the

Figure 2. (Color online) Upper Bounds of w; for Bubble
Existence, No Users
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historical supply of bitcoins points to a relatively
large . So in the case of bitcoin, our model suggests
that a bubble of any significance is unlikely without
users present.

The exposition so far has established that a spec-
ulative bubble can be raised on an otherwise valueless
item, where both the prices and the crash of the bub-
ble are essentially self-fulfilled beliefs of investors—
completely detached from the fundamental value of
the item (zero). In a bubble, both investor confidence
and the coin price are increasing over time. Thus, we
have the following mirror intuition: higher and higher
confidence is required to sustain investors” demand in
the face of increasing price, while simultaneously,
the increasing price fulfills the higher and higher
beliefs over time. This is the bubble environment we
wish to also capture later in the extended model with
user adoption.

In general, a level of confidence, as introduced by
Weil (1987), is a requirement on investors. A level of
confidence close to 1 requires all investors in the
market to believe that a crash will not happen. In
our model, as the growing price “pressures” the
confidence to grow, the bubble puts a higher and
higher requirement on investors. So far, we have
assumed that it is possible for w; to approach 1 as
long as it does not go beyond 1; however, we may
also think of an a priori upper bound @ < 1 on con-
fidence. In words, @ measures the maximum level of
confidence that investors can psychologically hold up
(Weil 1987, Shiller 2000). Obviously, this @ would
put a more stringent condition on w; than that in
Lemma 1.

Finally, before we introduce users, it is useful to
point out that we cannormalize N = 1. Amassof N > 1
(or N <1) investors can always be thought of as
a single unit of investors with each investor hold-
ing a smaller (or larger, respectively) amount
of dollars.

2.2. User Demand

We consider a mass of M =1 potential users who
desire coins purely as a medium of exchange. For
exposition, we first consider the case where no in-
vestors are present. We employ a Bass-like adoption
model. In each period, a user decides whether to carry
the coins or alternative currencies (such as dollars).
The benefit of carrying coins is the ability to conduct
transactions with them, which is increasing in the
number of other users. We also account for costs
associated with using a cryptocurrency. For example,
we can think of the costs as the opportunity cost of not
using dollars and the time and effort to maintain the
required software, as well as technological and pri-
vacy risks.
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Let m; denote the mass of users who adopt the coins
in a given period t. Then a user i has the following
utility for adoption in period ¢ + 1:

Ui = V(my) =,

where c; > 0 is the user’s cost of using the coins in the
period, and V(m;) is the benefit from using the coins in
the period. For simplicity, we assume the specifica-
tion V(m;) = m; to capture the network effects in-
herent in currency markets. As in the Bass model,
users’ decisions in the current period are informed by
the state of adoption in the previous period."’

We let the cost ¢; be distributed among the M =1
users according to a cumulative distribution function G(-).
To obtain analytical solutions, we will make a linear
specification:

if0<c<ix

0+ Ac o
otherwise, @)

Glc) = {1

where 0 is the set of consumers with zero adoption
costs, and A > 0 captures the density toward low
adoption costs.'” A higher value of A indicates lower
adoption costs among users. For the first period, m; = 0
naturally represents the size of the initial installed
base of users. For later periods, a user i adopts the
currency in t + 1 if and only if ¢; < V(m;). Assuming
A+ 6 < 1, we have the adoption dynamics satisfy'”

M1 = O+ Amy. (5)

The adoption path {m};2; will converge to some value
m* € (0,M). This convergent point is defined by the
identity m™ = 6 + Am*, or, equivalently,

. 0
T1-AC

We refer to m™ as the natural adoption ceiling, as it refers
to the highest level of adoption that evolves without
the influence of investors.

Again, letp; > Obe the price of a coinin period f, and
let A; be the total supply of coins in existence in period ¢.
If each user demands x > 0 dollars worth of coins to do
exchanges, then the total demand for coins is given by
mix/ps. In order to match supply and demand for
coins, we impose the market-clearing condition for
users in the absence of investors:

m

(6)

X - My
Pt

Equation (5) and the market-clearing condition above
imply a sequence of prices and adoption levels:

= At.

1- A
mt=1_/\'5, (7)

x (1-Af
= (i3] o 0

We see A; enters the price equation above. The sup-
ply of a cryptocurrency often closely follows a pre-
defined rule. First, the cryptocurrency creator typically
sets a supply ceiling, which we will denote by A.
Second, the cryptocurrency system controls its supply
over time by constantly adjusting the difficulty of
mining as well as regularly halving the output of
mining. Consequently, we can model the cryptocurrency
supply by A; = Acw(1 — p) for some B € (0,1). In fact,
the historical supply of bitcoin has followed this path
very closely,'* though the price of bitcoin has expe-
rienced large surges and falls. We note the size of A,
only has a nominal effect; a larger A, simply inflates
the coin price in every period. Hence, we can nor-
malize A, = 1, and Equation (8) becomes

_ox [1-A 5
=1z pl1i-a)
When f = A, the above price for coins in the absence of
speculative investors is constant over time:

x0
pt:l—/\' )

In what follows, we will focus on this case where the
supply of coins is controlled so that the price resulting
purely from user demand, in the absence of investors,
is constant over time. The main reason to focuson g = A
is to compare the settings with and without users on
an equal footing—recall that in the setting without
users (Section 2.1), the price absent of investors buying
is also constant over time (at zero). It is instructive to
consider a single, marginal investor. Investing in a
constant p; provides a return equal to the outside
option, so a single investor who has insufficient assets
to swing the price all by herself will find no strict
incentives to invest. However, if <A, the p; in
Equation (8) is increasing over time, which gives the
investorastrictincentive to invest. Consequently, this
case bears an obvious advantage in terms of bubble
formation over the setting without users. Similarly,
the > A case bears an obvious disadvantage in terms
of bubble formation.

Hence, the condition = A sets up a stage for us to
cleanly identify the impact that users bring to the
formation of a bubbly equilibrium, which we will
focus on next. As in the setting without users, even
though a single marginal investor finds no incentives
to invest, collectively, investors can still “coordinate”
to raise a bubble. Different from the setting without
users, however, investors must account for how their
actions will affect user adoption as well as how user
adoption will affect coin prices.

2.3. Equilibrium with Users and Investors
We now bring together the two isolated settings de-
scribed above (Section 2.1 and Section 2.2). We use a
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two-sided user market to conceptualize the interac-
tion between users and investors.

There are two sides of users: shoppers and vendors,
as illustrated in Figure 3. A shopper’s benefit of
adoption increases with the number of vendors and
vice versa. At the same time, they both care about the
number of investors who provide liquidity for coin
exchange. We formalize a model for this two-sided
market in Appendix A.3. The working of the model can
be summarized as follows. Within a period, shoppers
first decide whether to carry coins (instead of an alter-
native currency, such as dollars). A key factor in a
shopper’s decision is how many vendors accept coins.
If a shopper decides to carry coins, he first exchanges
his endowment x > 0 into coins via an investor (e.g.,
bank). The ease of exchange (i.e., liquidity) depends
on the number of coin-accepting investors. Next, the
shopper goes to coin-accepting vendors for shopping.
After transacting with shoppers, the vendors either
deposit the received coins or exchange them into
alternative currencies, such as dollars.

We show, in the appendix, that the above adoption
dynamics can be reduced to a formulation similar to
that in Section 2.2. Specifically, let m; be the mass of
users (which tracks both the shoppers and vendors)
and n; be the mass of investors in period t. Without
loss of generality, wecanlet N =1, M =1, and x = 1.1°
A user’s benefit now depends on both the number of
users and the number of investors, but potentially at
different rates:'®

V(Wlt + n,) =my + gb?lt,

where ¢ captures the differential rate of network
effects that investors exert on adoption. In period
t +1, a user with adoption cost ¢; adopts the currency
if V(m; + ny) > ¢;, where ¢; is distributed among users
according to Equation (4). Here, we require 0 + A +
A¢p <1 so that the support of G covers [0, M + ¢N].
As a result, we have following adoption dynamics
(compared with Equation (5)):

M1 = G(ﬂ’lt + gb?’lt) =0+ )\(m[ + (i)nt). (10)

Compared with Equation (5), the adoption dynamics
above suggests that the presence of investors n; ac-
celerates adoption. However, the caveat is that for this

Figure 3. Two-Sided User Market

Investors (e.g. banks): n,

buying goods
Vendors: d; yie 8

Shoppers: h

result to hold, a bubble must form so that n; is non-
zero. We will focus on the condition for bubble for-
mation in Section 3.2, particularly in comparison with
the no-user setting.

Next, consider an investor’s belief and decision. As
before, an investor holds y dollars and will purchase
coins when he expects a nonnegative return.'” In the
no-user setting with Equation (1), we specify an in-
vestor’s belief of tomorrow’s price as a detachment
from the coin’s fundamental value (zero in that set-
ting). We will make a similar specification here.
However, different from before, the adoption of users
implies that there may be a positive fundamental value
of the currency. Particularly, in the event of a crash,
the price will drop to not zero, but rather this positive
value, supported by the presence of users. It repre-
sents the value of the coin coming purely from users’
demand for transactions. A bubble manifests itself
as a detached price from the fundamental value. Ac-
cordingly, we specify an investor’s belief as follows:

_ Jwily + 5S¢ with probability wy,
Pl = S; with probability 1 — w;.

As in Equation (1), a higher w; denotes a higher level
confidence among investors. In the above, S; >0
denotes the fundamental value expected in ¢ for pe-
riod t + 1. Under rational expectations, S; equals the
price in t + 1 that can be supported even without any
investor demand (1,7 = 0). At the other extreme, L,
denotes the maximum price detachment from S;.
Under rational expectations, L; + S; will be the price in
t + 1 if all investors decide to buy coins (141 = 1). We
derive expressions for S; and L; after defining the
equilibrium.

Now we can define the bubbly equilibrium with
users present. In the equilibrium, users and investors
are tied together by (i) the fact that they pay the same
price for the currency and (ii) that investors exhibit
network effects to user adoption, albeit at a possibly
different rate compared with the network effects
created by users.

Definition 2. Given a set of model primitivesy, A,6, ¢, T,
and A; =1 - A', a sequence B = {p;, wy, my, nt}thl with
w; € (0,1) constitutes a bubbly equilibrium if Equation (10)
and the following three conditions are satisfied for all ¢:
i. Market clearing. The total demand for coins by
investors and users equals the supply of coins:

gy +m
Pt

ii. Rational expectation. The belief about the next
period’s noncrash price is exactly realized:

Ay

prs1 = Liwy + 54, VE.
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iii. Arbitrage-free. The expected return of investing
in coins equals the outside good’s return (normalized
to 1):

E
—(pt+1) = l (Lta)tz + St) =1.

Pt Pt

As before, the bubbly equilibrium defined here
focuses on cases where confidence is in the interior, so
that a crash remains a meaningful, but uncertain,
possibility. It is useful to point out that there is a
nonbubbly equilibrium in which w; = 0 for all ¢. In this
case, no investors participate in the coin market, the
price p; tracks the fundamental value S; in all periods,
and, importantly, m; follows the same path as in the
user-only model (Section 2.2). The other extreme case
where w; = 1 for all periods, however, generally cannot
constitute an equilibrium."®

Applying Definition 2, we see that the lowest
possible price expected for period t + 1, denoted by
S¢, must satisfy the market clearing with no inves-
tors (141 = 0):

+ + Amp + A
M1 +0 _ Ay = S, = O+ Amy + Ajn;
St A

(11)

The currency’s maximal speculative value, L;, is de-
rived from the maximal price S; + L; that clears the
market with full investor demand (1,1 = 1):

m +
Ly:AHl:)Lt:

12
Si+L; ( )

Yy
Arn '
Intuitively, L; depicts the maximum speculative value
that is sustained through the demand from exactly
N =1 investors.

Before deriving the key properties of the bubbly
equilibrium, it is useful to point out that the bubbly
equilibrium is defined conditional on the bubble
being sustained. When we say that {pt}thl is part of a
bubbly equilibrium, we mean that these will be the
realized prices as long as the bubble does not crash. In
each period, there is a self-fulfilled probability w; that
the bubble will crash tomorrow. If a crash is realized
inaperiod f, we may assume that w; and n; will be zero
thereafter, and p; will track the fundamental values."

3. Equilibrium Properties

Our analysis of the bubbly equilibrium is moderated
by two primitives of the model: y and ¢. The inter-
pretation of these two parameters is linked to the two
mechanisms that drive the dynamics of our model:
the financial side that sets price through the market-
clearing condition and the adoption side that follows
Equation (10). Given the normalizations in the model
(M =N =1 and x = 1), we can interpret y and ¢, re-
spectively, as the an investor’s potential impact on
the financial side and her potential impact on the

adoption side, both relative to a user. So by varying y
and ¢, we decouple investors’ roles on the financial
side and the adoption side.

It seems reasonable to think that investors can
(i) influence the financial side more than users, that is,
y =1, but (ii) influence the adoption less than users,
thatis, ¢ < 1. At the very least, it seems reasonable to
restrict attention to cases where y > ¢, which is what
we will focus on below.

Though the cases where y < ¢ should be unlikely in
reality, mathematically, Definition 2 of the bubbly
equilibrium still applies to such cases. We will discuss
the model behaviors in such cases toward the end of
this section.

3.1. Special Case (y = ¢)
We first consider the special case where iy = ¢, which
leads to relatively straightforward algebra and most
clearly exposes the intuition of two of our main re-
sults: (i) a bubble accelerates user adoption, and (ii) a
bubble with users is easier to form than an investor-
only bubble, in the sense that it puts demanding
conditions on the investor’s confidence. The second
result can be reinterpreted to mean that a bubble with
users is less likely to crash compared with an investor-
only bubble, as we will show. We use the y = ¢ case to
build some intuitions before we consider the general
cases in Section 3.2.

Now suppose sequence % constitutes a bubble path
(i.e., no crash happening). First, in period t under
Ay =1- A, the market-clearing condition gives us

_my gy
e

By (11) and (12), we have

g M _6+/\(mt+ynt).
t

_ y
Tl oA 1 = A1 ;o Le=

1 _/\t+1'

Setting the expected return in this period ¢ equal to 1
gives us another expression for price py:

yw? O + A(my + yny)
1- /\t+1 + 1- )\Hl

Pt = Ltwf + St =

Equating these two expressions for p; yields an ex-
pression for the masses of users and investors:

1 - At 2
Y+ = (v} +9),
which leads us to an expression for next-period
user mass:

1_/\t+1
My =0+ Alyny +my) = ) o+

/\—Aﬁ'l )
1-2 Ywy.

(13)
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Note that ? > 0 implies n,1 > %6, which can be
compared with Equation (7), which describes the
natural adoption without investors (which is also the
user adoption path in the nonbubbly equilibrium).
If we use superscript USER to indicate the setting
without investors, then we have m;.; > m45ER for all
t=1,2,.... In words, the adoption with a bubble is
faster than the nonbubbly adoption.
The bubble price in t + 1 is rationally expected as

Ywy + My

pra1 = Lewr + 5 = B

which, together with the next-period market-clearing

condition, pyy = " implies a simple expression
s Pt+1 1_AFT 7 P p p

for neq:

N1 = Wy

This simple one-to-one relation between investor
mass and confidence actually also holds in the more
general case, as we will show. Intuitively, it says that
investor confidence drives investor participation in
the market. If confidence is zero, no investor will buy
and the price will simply follow Equation (9) and
maintain a constant level over time, which is actually
the nonbubbly equilibrium.

Finally, to obtain w1, we set the expected return in
period t +1 to 1:

2
Pta1 = Lt+1a)t+1 + Spi1.

To express w41 in terms of the variables in period t,
we use

O + A(m1 + yn) |
1- /\t+2 4

Sp1 = Ly =

1= AtH27
together with the expressions for 1,1, pi+1, and 1.1 as
we have derived just above. The algebra is a bit in-
volved but it leads to a relatively simple expression
for wiyq:
1-A
2 _ .2 2
Wiy = Wy + 1 - A+ (wf - a)t)
A— /\t+1 )
= Wt —71 _ At+1 Wi _wt)'

Note that w;—w? >0, so the first line above says
wi+1 > wy. In other words, investor confidence grows
monotonically. On the other hand, the second line
says w?,; < w; Or Wiy < \/w;. Compare this result with
Equation (3) derived under the investor-only setting:

INV _  [Au  INV
Wiy = A, @Vt

indicate the investor-only setting). We see that the
investor confidence with users present need not grow
as fast as when users are absent, implying that user
presence relaxes the condition for bubble formation.

(here, we use superscript INV to

It turns out that for the general case y > ¢, the in-
equality w1 < y/@; may not hold.”’ Intuitively, this is
because of the following. Compared with the special
case, y > ¢ assigns a smaller value for ¢. The smaller
impact that investors have on the user adoption, the
less they can drive up tomorrow’s fundamental price
by buying today, which hurts the expected return.
As a result, the confidence level has to grow faster to

keep the expected return nonnegative. Nevertheless,
for the general case, we will show that w1 < /% W
holds, so the investor confidence still grows at a
slower rate compared with the no-user setting. A
graphical comparison is made in Figure 4.

An alternative way to look at the slowed growth of
wy is that if the highest required confidence levels are
the same between the settings with and without
users, wr = @V, then we must have w; > wNV for all
t=1,2,...,T — 1. Because a crash happens in period ¢
with probability 1 — wy, these last inequalities indicate
that the bubble with users present is less likely to
burst (or more likely to sustain) than the bubble
without users.

Finally, given w1 > w;, we see from (13) that myq >
m; for all t. In words, the user mass monotonically
increases over time. This seemingly regular result is
by no means easily granted in our context—it is
conceivable that the presence of speculative investors
could distort the adoption process so that the latter
becomes nonmonotonic. The intuition behind this “un-
usually regular” result derives from the assumption
of rational expectation, which asserts that if there
were a period in which the user mass declines, in-
vestors in the prior period would have correctly ex-
pected it. However, this anticipation of a decline in

Figure 4. (Color online) Examples of Confidence Paths
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Notes. The figure displays the paths of confidence w; in three different
bubbles. The first bubble assumes y = ¢, the second bubble assumes
y = 5¢, and the third bubble has no users present. The other prim-
itives are same across the bubbles: ¢ = 0.5, A = 0.6, and 6 = 0.1.
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users (which translates to a decline in fundamental
value) would make the very bubble difficult to sustain.
This same intuition holds for the general case too.

3.2. General Case
In this section, we consider the general case where
y > ¢. First, we will extend the results derived in the
special case (Section 3.1). Second, removing the as-
sumption of y = ¢ decouples investors’ roles on the
financial side and adoption side, and consequently
allows us to explore how the relative size of these two
roles affects bubble formation.

The first lemma breaks down the various conditions
in Definition 2 to allow the computation of the bubbly
equilibrium in a recursive fashion.

Lemma 2. Withy > ¢, sequence {a)t,mt,nt}le constitutes
a part of a bubbly equilibrium B iff for all t, we have
wy, ny, my € (0,1) such that the mass of users satisfies

(6 +yw?)(1—-A")— (1 - A)ymy

Y [ L) By ¢ 1 B 14

the mass of investors satisfies
M1 = 0+ Amy + /\q[)nt, (15)

and for t < T, the investor’s beliefs satisfy

2
Wi

(1= Ay + @iy — GA = YA £ GAFZ) = 5 + 5 A
- ]/(1 _ /\H—l) '

(16)
In addition, in any bubbly equilibrium, we have, for all t,
Niy1 = Wt

The possibility to compute a bubbly equilibrium
in a recursive fashion implies that the bubbly equi-
librium, if it exists, is unique for any given w;.

Some intuitions can be gained from Equation (16),
which describes the evolution of investor confidence.
We can rewrite it as follows (recall m* is the natural
adoption ceiling given in Equation (6)):

2
Wy
COA (1= A)(my =) + wpq (y — A=y AT+ AT
- y(1-A")

There are three terms in the numerator, all of which
may exert “pressure” for w; to grow, albeit driven
by different factors. The first term, 6A/, vanishes as
t — +oo but is positive for finite t. It captures the
pressure from the increasing supply of coins. The
growth of supply suppresses future prices, which must
be compensated by increases in confidence in order to

keep investors in the market. The eventual convergence
to zero of 6A' comes from the prefixed ceiling of
supply, which says that the growth of supply will
eventually flatten out.

The second term, (1 — A)(m; — m™), captures the ef-
fect of user adoption. For early periods where m; < m*,
the term is negative, so it actually relieves the pressure
for confidence to increase. Intuitively, this is because
the natural tendency for m; is to grow toward m*, which
raises the coins’ fundamental value and consequently
helps keep investors in the market at lower confi-
dence levels. However, in later periods where m; > m”,
the natural tendency in user adoption is for m; to
revertback tom”™ (which will happen if investors leave
the market). Unlike the earlier periods, this down-
ward tendency puts more pressure for confidence
to grow.

The third term in the numeratoris a multiple of w;_;.
It basically captures the feature of rational expecta-
tions; a higher w;_; from yesterday implies a higher
rationally expected price today, which in turn demands
a higher expectation for tomorrow, w;, to sustain
the bubble.

The next two propositions are based on Lemma 2
and provide bounds on the trajectory of w; over time.
The first proposition delivers a main result in this
paper: the presence of users relieves the pressure for
w; to grow. In other words, the requirement for bubble
formation is relaxed by the presence of users. The
same result was derived in Section 3.1 for the special

case y = ¢.

Proposition 1. Suppose y > ¢ and my = 6. In a bubbly
equilibrium, we have

for all periods t > 1.

Proposition 2. Suppose y > ¢ and my = 6. In a bubbly
equilibrium, we have

Wil > Wy,

for all periods t > 1.

A quick intuition for how user presence makes a
bubble “easier” is that the natural user adoption makes
the coin’s fundamental value increase over time,
which gives investors more incentive to buy. Al-
though this intuition may be true in general, it is not
what underlies Proposition 1. What Proposition 1
shows is that, even if coin’s fundamental value with-
out bubbles is constant over time (see Equation (9)),
bubble formation s still easier when users are present.
The key intuition for this result comes from the in-
teraction between users and investors. By buying the
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coins (and thus creating a bubble), investors can push
adoption beyond the natural rate, which in turn raises
the coins” value over time. It is this interaction, ra-
tionally foreseen by investors, that makes them more
willing to participate in a bubble.?!

We use the next proposition to formally address the
existence of a bubbly equilibrium. However, from a
more substantive point of view, it actually reinforces
our main result delivered by Proposition 1.

Proposition 3. Given a set of primitives y, A, 0, ¢, T, and
my = 0, ({) withy > ¢, a bubbly equilibrium exists as long as
w1 takes a value such that a bubbly equilibrium exists for the
investor-only case; (ii) for y = ¢, a bubbly equilibrium exists
for any wq € (0,1); and (iii) for y/¢ — +oo, a bubbly
equilibrium exists if and only if w; takes a value such that a
bubbly equilibrium exists for the investor-only case.

The proposition tells us that, compared with the no-
user setting, the condition for bubble existence is
relaxed by the presence of users, and it is most relaxed
when y = ¢ and least relaxed when y > ¢. The result
suggests that bubbles become easier to form as y/¢
decreases. Given the normalizations made in our
model, a decrease in y can actually be represented
by an increase in the number of potential users, M.**
Hence, not only do we have the “discrete result” that
bubble formation is easier when users are present, but
we also have the “continuous result” that bubble for-
mation becomes easier when more users are present.

We use the following exercise to further illustrate
the effect of y/¢ onbubble formation. Recall that in the
investor-only case, the condition for equilibrium ex-
istence is that w is sufficiently small such that w; will
not grow beyond 1 in some future period (Lemma 1).
A similar requirement applies here. Specifically, for
a given set of primitives, there is an upper bound
for w; such that a bubbly equilibrium exists for
any T'=1,2,...,00 iff w; is below this upper bound.

Although this upper bound does not have an ana-
lytical expression, it can be computed numerically.
Figure 5 displays this upper bound for w; as a function
of y/¢. The left plotassumes A = 0.4, and the right plot
assumes A = 0.6.

There are two important observations: (i) the
presence of users relaxes the bounds, and (ii) a larger
ratio between y and ¢ tightens the bounds. These
observations are consistent with what we have seen so
far in Propositions 1-3.

Next, we turn our attention away from investor
confidence to focus on user adoption. This leads us to
another main result of this paper, which formalizes
the insight that a bubble accelerates user adoption.
The same result was derived in Section 3.1 for the
special case y = ¢. To show this result in the general
case requires the following lemma.

Lemma 3. Suppose y > ¢. Along the path of any bubbly
equilibrium with my < m*, we have

my < My,

forall t > 1 on the bubbly path.

Like we discussed in the y = ¢ case, this seemingly
regular result is by no means easily granted in our
model—it is conceivable that the presence of specu-
lative investors could distort the adoption process so
that the latter becomes nonmonotonic. The intuition
behind Lemma 3 has its roots in the assumption of
rational expectation. The details of the intuition are
the same as given in Section 3.1, so we shall not repeat
them here.

With the monotonicity of m;, we can move to show
that m; will eventually surpass m*, the adoption
ceiling without investors. Of course, if T is too small,
m; will not reach m* before the end period T. So we
need to evoke the existence of a bubbly equilibrium
for large T.

Figure 5. (Color online) Upper Bounds of w; for Bubble Existence
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Notes. The plots show the upper bound of w; that permits a bubbly equilibrium for T = co. The first-period user mass 1, is set at 6. The specific

values of 6 and ¢ (or y) do not affect the curves shown here.
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Proposition 4. Suppose y > ¢, my <m”, and a bubbly
equilibrium exits for T = co; then there exists t* such that
t > t* implies m; > m*.

Itis important to point out that our results on m; are
conditional on the sustenance of a bubble (as is our
definition of bubbly equilibrium). When a bubble
bursts, m; will break away from its trajectory in a
bubbly equilibrium. However, m; will still stay above
the levels of user sizes in natural adoption. To see this,
suppose the bubble bursts in period s; then myq =
0 + Amy for all t > s. Because of the bubble, we have
ms > mUSER (recall that superscript USER denotes the
user-only setting). Hence, m; > m{SER holds for all
t>s. As a result, though we have shown only that
user adoption is faster within a bubble, the same holds
true ex ante accounting for the possibility of a crash.

3.3. Improper Case

So far, we have restricted attention to y > ¢. The in-
equality asserts that investors hold a stronger influ-
ence on the financial side than the adoption side,
compared with users. As said, mathematically, our
equilibrium definition also applies to cases where
y < ¢. Although we think such cases are unlikely in
reality, they do offer some interesting intuitions.

With y < ¢, a bubbly equilibrium may exhibit be-
haviors that are irregular compared with those be-
haviors derived in Section 3.2. Particularly, neither w;
nor m; needs to be monotonically increasing.” Intu-
itively, this is because investors’ participation can
substantially accelerate adoption (because of a rela-
tively large ¢) without significantly raising today’s
price (because of a relatively small y). As a result,
investors can easily raise the expected return of coins,
which makes an increase in confidence sometimes
unnecessary in sustaining a bubble.

More specifically, the monotonic growth of w; in
Proposition 2 is the result of several forces. First, in a
bubble with rationally expected prices, the price must
increase over time. The growing price puts pressure
on the confidence level to grow as well (in order to
keep the expected return nonnegative and thus sus-
tain the bubble). Second, the coin supply is increasing
over time, which suppresses future prices. This sup-
pression pressures the investor confidence to grow (in
order to keep the expected return nonnegative). Third,
user adoption gradually raises the fundamental value of
coins, which may relieve the pressure for confidence to
grow. When y > ¢, the first two forces overcome the
third. However, when y < ¢, investors can substan-
tially accelerate user adoption without raising today’s
price, which allows the third force to overcome the
first two. When this happens, the current-period
confidence level will be lower than that in the last
period. Furthermore, such a decline in confidence

can translate into a decline in user adoption, as it
implies a decline in investor participation thanks
to rational expectations.

4. Discussions and Conclusion

Our study is the first to look into the possible inter-
actions between financial bubbles and product dif-
fusion for new currency adoption. It best portrays
currencies whose supplies evolve in a predictable
fashion, such as cryptocurrencies. In that context, we
explored conditions for when and how investors and
users reinforce each other in sustaining speculative
returns and adoption benefits, respectively. On one
hand, users benefit from the network externality
created by investors in a bubble, which then accel-
erates user adoption. On the other hand, investors
expecting a more steady stream of users to buy cur-
rency do not need to rely as heavily on the confidence
of their fellow investors to sustain a return. Our re-
sults point to the conclusion that a currency bubble is
most likely to form (or less likely to crash once
formed) when some event increases the base of po-
tential users.

There were two major price surges in the bitcoin
history before 2019. The first major surge happened
around November 2013. Our conclusion above is
consistent with our observations from the introduc-
tion about the impact of the Shared Coin service,
which coincides with the timing of this price surge.
The anonymity offered by the Shared Coin service
expanded the potential user base. Under the lens of
our model, this expansion can be interpreted as an
increase in M (or an increase in y with our normali-
zation), which therefore relaxes the level of the in-
vestor confidence required to form a bubble.

The surged price fell rapidly in early 2014. Al-
though a bubble bursting could always be a self-
fulfilled, random event (as permitted in our model),
our theory can offer a more concrete event-based
explanation, rooted in the user-side of the market.
In February 2014, one of the largest bitcoin exchanges,
Mt. Gox, filed for bankruptcy amid reports of 750,000
bitcoins stolen, which caused a major upset among
users regarding bitcoin’s security. Supposing that this
eventscraped away the potential user base for bitcoin,
then a bubble would be harder to sustain in terms of
investor confidence, thereby compelling the crash.

The second major price bubble happened in late
2017. Earlier in 2017, several countries—Japan, Rus-
sia, and Norway—announced their legitimization of
the cryptocurrency, thereby increasing the potential
user base and subsequently, according to our model,
relaxing the level of investor confidence required for a
bubble. The price plummeted in early 2018. Although,
again, a crash can be a self-fulfilling event without
triggering causes, several events may have advanced
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the downfall, including the anticipation of China’s
and South Korea’s bans on the trading of bitcoins as
well as hacks at several cryptocurrency exchanges
(e.g., the Coincheck hack). Even though these ex-
changes were trading not bitcoins but other crypto-
currencies, the hacks may have made investors worry
about the security of cryptocurrencies in general.
Taking our results a step further, they seem to
suggest that any entity introducing a currency can
take advantage of bubbles to induce currency adop-
tion. Indeed, it is worthwhile to note that the Euro-
pean Monetary Union initially launched the euro in
1999 to investors only as an accounting currency,
before it became the European Union’s standard
medium of exchange. Our theory provides a rationale
for such a launch strategy, as it shows the synergy
between users and investors. Lessons from our model
may be more widely applied now that nongovern-
ment entities can easily market their own currencies.
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Appendix A

A.1. Continuous Beliefs

For our analytical results, we relied on a simplified discrete
system of investor beliefs (see Equation (1)). Below, we
consider a continuous version for this belief.

Let us specify pi1 ~ Ly X Beta(a, 1/a4). As Figure A.1 il-
lustrates, the mass of this distribution moves away from 0
toward L; as «; increases from 0 to +oo. The distribution
family includes the uniform distribution when a; = 1. Also,
Figure A.1 shows that the distribution family that we
consider is inclusive with respect to mirror beliefs: the
probability density function (p.d.f.) of Beta(ar, 1/a;) is exactly
the mirror image of the p.d.f. of Beta(e], 1/a]) with a] = 1/a.

The two-point specification in Equation (1) is an ap-
proximate discretization of the continuous family. To see
this, suppose that we want to discretize the beta family to a

two-point distribution as follows while preserving the
mean as well as the variance:

- L
Pt+1 = {gt !

Using the formulas for the mean and variance for a beta
distribution, we have

with probability wy,

with probability 1 — w;. (A1)

[ at .
ay + l/at'

g (1 - wpwy =

St
1
(at + l/at)z(at + 1/at + 1)

These give us w; and g;, both as functions of a;. For w;, we
have a closed-form expression:

ad +a? + oy

W=t
d+a?+a+1

Itis seen that there is a one-to-one mapping from a; to w;:
[0,4+00) — [0,1]. So, basically, a; represents the investor
confidence in the continuous-belief model, playing the
same role as w; in the discrete-belief model.

Unfortunately there is no closed-form expression for g;.
However, we can trace the values of gy and w; as we vary a,
which gives us g; as a function of w;. This function is plotted
in Figure A.2. We see it is very close to the 45° line. So the
discretized distribution (A.1) is closely approximated by
the belief specification that we used in the main model
(i.e., Equation (1)).

A.2. Bitcoin Supply

Government-backed currency is issued at a rate determined
by the central bank, which takes into account the concurrent
state and prospects of the economy. In the United States, the
Federal Reserve System increases the monetary base by
issuing dollars.

In the context of cryptocurrency, the bitcoin generation
algorithm defines how currency will be created and at what
rate. Particularly, the supply of bitcoins is controlled to
follow a preset rule toward a preset ceiling. The result is a
supply trajectory that has closely followed an exponential
curve: Ay = Ao(1 — B'), where A, is the supply in period t, A
is the preset ceiling, and <1 captures the growth rate.
Figure A.3 shows both the historical supply of bitcoins and
the fitted exponential curve. The yearly 8 is estimated to be
around 0.825.

Figure A.1. (Color online) Probability Density Function of Beta(a, 1/a)
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Figure A.2. Plot of g;(w;)
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The key cause behind this exponential supply curveis the
control of mining. Bitcoins are supplied through mining.
Miners are network computers that pack individual transac-
tion records into blocks of transactions, which are then
“chained” together by the bitcoin system to create an entire
history of bitcoin transactions (hence, the term “block-
chain”). Block creation is accompanied by the issuance of
new bitcoins. The difficulty of packing blocks is adjusted by
the bitcoin system so that regardless of the mining activities
(e.g., the number of miners or the computational power of
mining machines), blocks are created at a rate of six per
hour. At the same time, the number of bitcoins issued per
block is set to decrease geometrically, with a 50% reduction
every 210,000 blocks, or approximately four years. The
result is that the number of bitcoins in existence follows the
exponential curve with a ceiling of 21 million (A).

A.3. Two-Sided Market for Coins

In the main text, we rely on Equation (10) to describe the
Bass-like adoption dynamic. Here, we present what can be
seen as a microfoundation for Equation (10). It uses a two-
sided market to describe coin transactions and exchange.
The two sides are the two types of users—shoppers and vendors.

In each period f, we denote the mass of shoppers that
carry coins to do transaction by h; € [0,H]; the mass of
vendors that accept coins is denoted by d; € [0, D]. Here, H
is the total mass of shoppers, who may or may not have
adopted the coins. Similarly, D is the total mass of venders.
We normalize H = 1. Typically, there are more shoppers
than vendors, so D < 1.

Figure 3 in the main text summarizes the working of the
two-sided market. Within a period, shoppers first decide
whether to carry coins (instead of an alternative currency
such as dollars). A key factor in a shopper’s decision is how
many vendors accept coins, an issue that we will take into
account below when specifying the shopper’s value from
adoption (see Figure A.4 for an illustration). If a shopper

Figure A.3. (Color online) Bitcoin Historical Supply
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Notes. The circles mark the quarterly supply of bitcoins (histori-
cal data). The solid curve shows A; = A« (1 — B) fitted to the circles.
The quarterly g ~ 0.953 and the yearly g ~ 0.825.

decides to carry coins, he exchanges his unit endowment
(x =1) into coins. He can do this exchange via a coin-
investing bank or individual investor. The ease of ex-
change, or the liquidity of coins, depends on the number of
coin-accepting investors, an issue that we will also account
for when specifying the shopper’s value from adoption.

Next, the shopper goes to one of the coin-accepting
vendors for shopping. After transacting with shoppers,
the vendors either deposit the received coins or exchange
them into alternative currencies, such as dollars. Again, the
ease of deposition and exchange depends on with the mass
of coin-accepting investors.

In accordance with the above description of the two-
sided market, we specify a shopper’s value of adopting
coins in period t + 1, denoted by VI, as a function of the
fraction of coin-accepting vendors and the fraction of coin-
accepting investors. As in the Bass model, we assume that
users are myopically adjusting their adoption decisions.
Specifically,

VI, =di/D+¢n/N = di/D + pny,

where parameter ¢ allows the user’s utility to put different
weights on the ease of exchange (liquidity) and on the ease
of transactions. Similarly for the vendors, we specify

Vi =h/H+ one/N = Iy + pny.

Under the same adoption cost distribution as specified in
Equation (4) for both shoppers and vendors, the following
adoption dynamics are implied:

I’lt+1 =0+ A(dt/D + tj_)nt),

di1/D =06+ )\(ht + ¢”t)~ (A.2)

Intuitively, these two equations imply that in the market
of coins, (i) the mass of shoppers tomorrow increases with
the mass of vendors and the mass of investors today, and
(ii) the mass of vendors tomorrow increases with the mass
of shoppers and the mass of investors today. Taking the
difference between these two adoption equations, we have

hee — dt+1/D = _A(ht - dt/D)~ (A-3)
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It is natural to set h; =6 and d; = 6D (which can be
thought of as the consequences of dy = 0, hy = 0, and ny = 0).
As a result, Equation (A.3) implies that for all ¢,

ht = dr/D

This equality says that the sizes of shoppers and vendors
grow in parallel. This result should be intuitive: as more
vendors accept coins, more shoppers are willing to carry
coins; conversely, as more shoppers carry coins, more vendors
find it compelling to accept coins. Now Equation (A.2) can
be written as

hH—] =0+ /\(hf + (Pnt),

which is equivalent to Equation (10), if we think of each
shopper here as a user in the main model. Because the sizes
of shoppers and vendors grow in parallel, tracking the
number of shoppers also tracks the number of vendors.

A.4. Extensions on Adoption Values

A.4.1. Nonlinear Adoption Benefit We consider an ex-
tension where the network effects on user adoption are
nonlinear. Specifically, suppose the benefits that a user
derives from adoption are given by

V(my, i) = my + nm? + ony.

Intuitively, the nonlinear term creates a snowball effect
where adoption itself accelerates the adoption rate. Fol-
lowing the line of thought in our benchmark model, this
additional accelerating effect should further relax the condition
for bubble formation.

This seems to be indeed the case. Figure A.5 displays the
upper bound of w; that permits a bubbly equilibrium, as a

Figure A.4. Vendor-Shopper Network

Notes. This plot illustrates the interaction between vendors (V) and
shoppers (S) when there are four times the shoppers compared with
vendors. When one of the shoppers decides to carry coins, each
vendor sees one-eighth of its customers want to do transactions in
coins. When one of the vendors decides to accept coins, each shopper
sees half of his or her vendors accept coins.

function of y/¢. The figure extends the comparison we
made in Figure 5. The top curve in Figure A.5 displays the
case with the snowball effect. The middle curve displays the
case without the snowball effect (i.e., the model considered
in Section 2.3). The bottom curve displays the case without
users (i.e., the model considered in Section 2.1).

Higher upper bounds indicate more relaxed conditions
for bubble formation. Hence, we see that the snowball effect
relaxes the condition for bubble formation. This result is not
specific to the model primitives used in Figure A.5. It holds
for all of the many sets of primitives that we have examined.

A.4.2. Investors Valuing Liquidity We consider an exten-
sion where investors value liquidity. Specifically, in addi-
tion to demanding an expected return equal to that of the
outside good, investors demand an extra return to com-
pensate the relative low liquidity of coins (compared with
the outside good, such as short-term government bonds).
Accordingly, we specify the nonarbitrage condition as

Ea)tz =1+0-(1—-my).
143

Parameter ¢ calibrates investors’ value for liquidity. The
higher ¢ is, the more they need to be compensated for low
liquidity. The liquidity increases with n;, the mass of in-
vestors, and reaches its highest level when all investors are
trading coins (n; = 1).

From the above nonarbitrage condition, we see that,
compared with ¢ =0, any positive | requires a higher w;.
Hence, intuitively, when investors care about liquidity, the
confidence level must grow faster, which makes a rational
bubble more difficult to sustain. Note that this intuition
applies to both the settings with and without users. So the
question is how the two settings compare in terms of bubble
formation, when both have investors demanding extra
return for liquidity.

Figure A.5. (Color online) w; Upper Bounds for Bubble
Existence, Nonlinear Adoption
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Figure A.6. (Color online) w; Upper Bounds for Bubble
Existence, Investor (Inv.) Valuing Liquidity
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To answer this question, Figure A.6 displays the upper
bound of w; that permits a bubbly equilibrium, as a function
of y/¢. The figure extends the comparison we made in
Figure 5. The top curve in Figure A.6 displays the case
where ( =0 (which reduces the model to the same as in
Section 2.3). The middle curve displays the case with ¢ = 0.1.
The bottom curve displays the case again with ¢ = 0.1 but
without users.

We see that for the setting with users, moving from ¢ = 0
to t = 0.1 indeed tightens the upper bounds. However, for
the setting without users, ¢ = 0.1 effectively makes a rational
bubble impossible (the bottom curve overlaps with zero).
Hence, bubbles are easier to form in the setting with users
compared with the setting without users, which is con-
sistent with our findings in Section 3. This result is not
specific to the model primitives used in Figure A.6. It holds
for all of the many sets of primitives that we have examined.

Appendix B. Proofs

Proof of Lemma 1. By Equation (3) and A; = 1 - g/, we have

Multiplying these equations, we have, for any t > 3,

-1 1 1 (1-p+1)*"
wj _1—52.1—[33.(1—[34)2“. (1—lgt)2"3 T
_ =y
=0y r; ﬁkzﬂ.

Let
2k73
Bi:=(1-p)" .
Note 0 < By < 1. We have
B 1
ot-1 H+1
W = wy - . . (B.1)
C - L B

First we show the sufficiency of w; < (o) for existence.
If the condition in the lemma holds, then we must have, for
any t > 3,

wr <(1 —52)1@3,{,

which, together with (B.1), implies

wp < J1-pH < 1.

The case with t = 2 can be directly verified, under which
the condition in the lemma translates to w; <1-p> and
wy < 4/1-PB3.

Next, we turn to the necessity of w; < Q(c0) when T = co.
This part of the proof relies on first understanding the limit
of By. Note log By = log(1 — ¥)/237*. Using L’Hépital’s rule,

2 <(1-p)T e

i log ()"
1- ﬁ" _
hm log By = l N g2k

log(p)
23 10g(2) k—)oo(zﬂ)

This result implies that (i) By converges to 1 if § <0.5,
(ii) to e™V/8 if g = 0.5, and (iii) to 0 if § > 0.5. Thus, we know
1325 B equals 0 if § > 0.5. As to what happens for < 0.5,
we can use the ratio test on the series log By:

- ﬁm log(B)p*+!

m log Bi+1 _
l—ﬁk log(p)

k—o0 log Bk

=28,

k—o0

which says log By is a convergent series, and thus [1;2; By is
a positive finite number, for < 0.5.

Case (i) (8 < 0.5). Taking limit of (B.1), we have

-1 1 1

limw? =wp —s ———.
T TR IR, B

t—oo

Thus, if the condition in the lemma fails, then we have
lim;— 0 a)fH > 1, which implies that there exists some ¢ such
that w; > 1, thereby violating Definition 1.

Case (ii) (8 = 0.5). The condition in the lemma amounts to
w1y < 0. With wy > 0, Equation (B.1) implies

» e8 1
MR S er g T

-1

Therefore, we can find ¢ such that w; > 1, violating
Definition 1.
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Case (iii) (8 > 0.5). The condition in the lemma amounts to
w1 < 0. Note that

t

[1B <10~ = 0 -p7 "

k=3 k=3

Therefore, Equation (B.1) implies

" 1-p (1 - /3f+1)2"2

w; >w1-—1_ﬁ2~ T

One can show that the exponential term on the right side
goes to +co under § > 0.5 by using L'Hoépital’s rule on the its
logarithmic expression. Thus, with w; >0, we again can
find t such that w; > 1. 0O

Proof of Lemma 2. We derive recursive formulae of (14), (15),
and (16) under coin supply A; =1—A'. Now suppose B
constitutes a bubble path (i.e., no crash happening). First, using
the market-clearing condition, we get

_ynmptmy
e

by Equations (11) and (12), we have

_ O+ Amy + Aqbnt _ y
5t = 1 - At ’ Lt_l_/\tﬂ'
Setting the expected return in this period ¢ equal to 1 gives
us another expression for p;:

Y 2

o+ /\mt + /\(pnt
1— At+1 Wi

pt=Lta)t2+Sf= 1_At+l

Taking the two equations for p; together yields

yaw? &+ Amy + Apny _ yny + my
1 — At 1— At - 1=A 7

which implies

0+ yaf)(1 = AT) = (1= )my
M= AT —pA(T - A

The next-period bubble price is rationally expected as

My + YWy

pr+1 = Liwr + S¢ = 1AL 7 (B.2)
where the next-period mass of users is given by (10)
Mip = o+ /\mt + /\qbn,
Market clearing in period t + 1 gives us
_ Pre1A1 — M _
M =—————— = W
¥
Next, we can compute Sy and Ly as
0+A + A
SH_-I _ Mt ¢)nt+1 Lf+] — Yy . (B3)

1-— /\t+2 4 1-— /\t+2

Setting the expected return in t + 1 to 1, we have the ex-
pression for w1 as follows:

5 Pr1— St
t+1 = .
Lt+1

Using (B.2) and (B.3), we can show that

s (=M + wi(y — pA — yA*2 + pAZ) — 5+ AT
1 7 y(1 — AFT) ’

which completes our proof. O

Proof of Proposition 1. Before establishing the result with
my = 6, we show the inductive argument

t+1 t+2
R <A s <A
t 1-Af =1 B e t-
Fix a t, and suppose that
A 1— At
2 t+1
w; < Wp-] = ———7 Wi1.
t At =1 1 —At =1

By Lemma 2, which says n; = w1, we have

S o2 1-Af
c: wtl_/\t+1'

The above inequality, together with (14) in Lemma 2,
gives us
(0 +yw?) (1= Af) = (1 = Aym,
y(1 =AY — pA(1 - AY)

, T-A!
a)fl_/\Hl’

which can be reduced to an upper bound on

(1= A)[5(1 = A™) + @i (A = A™)]
(1-A)(1-AHT) '

my <

One can show that (16) in Lemma 2 can be reduced to the
following, if we substitute ;.1 with m; using (15) and (14):

. (1 -V *w? +yo + (y — §)Amy)
t+1 t+1 t+1
Yy — A+ pATT —yat)
N 1 -1 - wpawy B 0 — )\wt(y — ¢)
1-— AH’l y

(B.4)

Applying the upper bound of m; to the above expression
produces an upper bound for w?; and, consequently, an
upper bound for w?,; — =477 w;. One can show the last upper

)t
17AH’
bound reduces to

) 1-— /\t+2

A1 — AT — (1 - A
wt+1_1_/\t+la)f<_ il d J

y(l _ )\Hl)

Because 1 — A1 —wy(1-Af) 21— A1 —(1-A") >0, we have

) 1— /\t+2

Wi ————w; <0
t+1 1= A1 4

which is what we want to prove.
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Now suppose m; = 6. By (B.4) with t = 1, we can show that

1-2° _ WA Lol
1= +Ay+Ay-¢)] v ~ 7

with the equality holding only at wy =0. O

2
Wy — w1 *

Proof of Proposition 2. By way of induction, we fixa t > 2,
assume that
Wy > Wi-1,

and then show w1 > w;. Under the above assumption,
Lemma 2 says n; = w;_1, which gives us
Wy > Nyg.

Now, substituting 7, in the above with (14) in Lemma 2,
we get

6(1 - At) + /\(Z)wt(l - /\t) - ywt(l — Wi+ (L)t/\t - /\Hl)

e 1-A

Applying this inequality to (B.4) produces a lower bound
for w?,,, which can be shown to reduce to

(1= D)A = w)awr
Wl > o + T ,
which implies that

Wil > Wy

Now we let t = 2 and show that w, > w;. Assuming that
my = 6, we can show by (B.4) with t =1 that

Y(1+A+A%) - Ap(1+A)
y(1+A)
_wz.y+(2/\+)\2)(y—(j))
Yy + Ay - Ad)(L+A)
The right-hand side in the above equation is quadratic and
concave in w;. Therefore, can check the endpoint cases w; = 0

and w; = 1. The first case makes the above right side zero. For
the second case, the right-hand side reduces to

A2y - ¢)
y(y + Ay = Ag)

Hence, we have w; > w; for any w1 € (0,1). O

2 2 _
Wy — W] = w1+

>0

Proof of Proposition 3. For part (i), to prove the existence,
we need to show that 1, m;, w; € (0,1) under the recursive
characterization in Lemma 2.

Propositions 1 and 2 rely on Lemma 2 to show that w;
increases over time but at a slower rate than @MV, where the
superscript INV denotes the investor-only case and satisfies
the condition in Lemma 1. Hence, if the primitives are such
that NV € (0,1) for all ¢, then we must have w; € (0,1) for
all .

As to the mass of investors, with m; = 6, we have

(6 +ya?)(1-2)=(1-2)5 _
y(1-12) - pA(1- 1)

2
ywy

Syt (y-)A

which guarantees thatn; € (0,1). Fort > 1, we have ny1 = wy,
so we have 74,1 € (0,1) as well.
As to the mass of users, it evolves by

My = O + Amy + Apny.

Recall the restriction on parameters that 6 + A + A¢p < 1, so
we have m;€(0,1) = my1€(0,1). As a result, with my =
0€(0,1), we have m; € (0,1) for all ¢.

For part (ii), for the special case y = ¢, we have, from (B.4)

A— )\t+1

w%Jrl =@ 1— At+1 (wt - wfz)’

which implies that «?; <w; as well as w1 > @;. This
guarantees us that w; € (0,1) for any ¢, as long as w € (0,1).

For part (iii), finally, consider y — +co. We have

) 1-MVw? 1-1)1 - way

Wiiq 1-— /\t+1 1- AtJrl -0+ /\[L)t
1-— AHZ
=T

This relation is the same as in the investor-only case of
Lemma 1. O

Proof of Lemma 3. Equations (14) and (15) tell us that

(6 + yw%)(l — )\t) - (1= A)my
y(1 =A%) = pA(1 - AT

M1 = 0+ Amy + A(p

Hence, for all ¢,

5(1 = A1) + w?p(A — A1)
=Dy —yA™* + At -

Now, fix any t. Given m;_1 < m;, we have

my <My @ My <Y

(1= A1) + 0 (A~ A)

_ B.5
my_1 <Yy (1—)\)(y—y/\t+¢)\t) ( )
By contradiction, suppose that m; > ;1. Then

B l—AHl + 2 A—AH'l
m > y ( ) a)f(il)( - )’ (B6)

(1= )y - yA™" + oAt

by (14) in Lemma 2, which implies
2(1 = At) — oAt

wry = mp < VL= A) =X (B7)

y—(y—¢)At

The equality above also comes from Lemma 2.
Next, using both (14) and (15), we have

O +ywi )L = A7) = @ = Ymyy
y(1 - Af)y = qb)\(l - )\tfl) '

my =0+ Amy_q + A(P

Substituting n;_; in the above with inequality (B.5) gives

o(1= ') + w2 yg(1 - 1)
(T=M)y—yAt+pAY) 7

my <y
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which, under (B.7), implies that

Y _ w?(1-A")-6A!
(1= A') + (1 - 2') LEEET

(1= Dy —yA" +AT)
We reach a contradiction if we can show that the left-hand
side of the above inequality is smaller than the left-hand side

of (B.6). It can be shown that the difference between the two
left-hand sides amounts to

my <y

YoM (1= Ao + Agef + (1 - M| _
A=-My- -]y -y -o)A™]

So we indeed reach a contradiction, which proves the
inductive claim

Mi—1 <My = My < My41.

Finally, let us look at the first period. We will show that
my < m”* implies my < nmy. By Lemma 2, we have
(6 +yw})1-2)—(1-A)ym

y(l - /\2) -pA(1=7)

m2=6+)\m1+)\¢

With the above expression for m», it can be shown than

Y(6 + A6 + Adpw?)
y-Ay-¢)

mp < mpy & myp <

If m*<Z, then m; <Z and we are done. If m* > &,
however, then

oA + Ayw? —yaw? >0,
which can be shown to imply
6 +yaw? < E.

However, for the bubbly equilibrium to exist, we must
haven; > 0. Using (14) in Lemma 2, we see that n; > 0 implies

my < 6+ yaws.
As a result, we have m; < E, and again we are done. O

Proof of Proposition 4. By Lemma 3, we know that m; is
monotonically increasing, which, together with the fact that
m; is bounded above by 1, implies that 11; converges to a limit.
We denote this limit as . Similarly, we know that w; con-
verges and denote the limit by @.

Using (14) and (15) in Lemma 2, we have

I
= 54 i + Ag O YE) = (L= Dy

y = A ’
which has the unique solution
_ 5+ Apa?
M=

Using (16) in Lemma 2, we have

s (1—)\)ﬁi+d)(y—qb)\) -0
w”- =
Y
_AQa* + @y — PA)
y 7
which has two solutions, either @ =0 or @ = 1. As long as
wp > 0, it must be that @ = 1. Hence,

A

o+Ap
B

=T

which completes our proof. O

Endnotes

! Even Facebook plans to launch a cryptocurrency, Libra, in the near
future (see Horwitz and Olson 2019).

2This is achieved by focusing on the case where the positive effect of
user adoption on the fundamental value is exactly offset by the
negative effect of the growth in the cryptocurrency supply. Keeping
the fundamental value constant allows us to compare the settings
with and without users on an equal footing (the fundamental value in
the no-user setting is constant at zero).

8 Our model tells a similar story to explain another major price spike
of bitcoin in late 2017. Earlier in 2017, several countries—Japan,
Russia, and Norway—announced their legitimization of the cryp-
tocurrency, thereby increasing the potential user base and, subse-
quently, according to our model, relaxing the confidence required
for a bubble.

*It is not difficult to generalize our model to r > 0 by introducing a
growth rate on the investor population or the dollar holding of each
investor. Results will remain the same qualitatively, albeit with more
complex algebra.

®Risk neutrality of all agents is assumed throughout the model. This
assumption simplifies the analysis, though we acknowledge that
assuming alternative risk preferences could affect the results.

®In Appendix A.1, we show a one-to-one mapping between w; €
(0,1) and a; € (0, +0). To obtain analytical solutions, we make use of
the discrete version in (1) throughout the main text.

"In Weil (1987), however, the confidence is fixed constant. As a
consequence, the speculative price does not surge up, as we often
observe in real bubbles. We let confidence be time varying to more
closely capture price surges.

8 Under rational expectation, one can show that p; = 0 implies either a
crash has happened or the prices in all periods are 0 (the nonbubbly
equilibrium). On the other hand, p; = L;_; implies the expected return
in t is less than 1 so n; = 0, which contradicts p; > 0.

¥ The best known application of this condition is perhaps the arbitrage
pricing theory, introduced by Ross (1976). Also see Roll and
Ross (1980) and a more recent discussion in Malkiel (2003).

90ther equilibria may exist under alternative specifications of in-
vestor belief (1), for example, pr1 = wtth or /w¢L; with probability w;.
We thank an anonymous referee for pointing this out.

" There are a few empirical studies in marketing that extend adop-
tion models to forward-looking consumers, including Song and
Chintagunta (2003) and Nair (2007).
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2We acknowledge that adoption costs, in reality, may decline over
time because of progresses in adoption and infrastructure. If so,
adoption would accelerate further than shown here. For simplicity,
therefore, we keep the adoption costs exogenous while allowing the
benefits to be endogenous.

1n practice, holding a cryptocurrency poses risks associated with
technological or legal disruptions. For example, some cryptocurrencies
have experienced hacks of cryptoexchanges and trading bans by
governments. Although our main model abstracts away from such
risks, we discuss the impacts of these disruptions in Section 4.

"In Appendix, Section A.2, we discuss in more detail how our supply
model reflects the institutional realities associated with bitcoin.

5 To see this, first suppose N = 2. We can transform it into N = 1 by
thinking of each investor in the model as representing two actual
investors. We also need to double y, the dollar holding of each in-
vestor in the model. A similar transformation applies to M # 1. As
to x, notice that doubling the values for both x and y will only have
a nominal effect: the prices in all periods double. Hence, between x
and y, we can normalize one of them to 1.

®1n Appendix A, Section A.4.1, we consider an extension allowing
users to exert nonlinear network effects.

In Appendix A, Section A.4.2, we consider an extension where in-
vestors may also value liquidity (as users do) in addition to ex-
Ppected return.

'8 This can be seen from Proposition 2 extended to include w; = 1. The
same proof will show that w1 > w; with w1 = @y with the equality
holding only when y = ¢. Hence, aside from the y = ¢ case, w; = 1
would imply w1 > 1, a contradiction.

®Forsucha postcrash state to be sustainable, investors must have no
incentive to start buying coins again. We verify this as follows. Let t be
the period when the crash has happened. Then, p; = S5;-1 = m;/A; and
Pre1 = M1 /Apr. Because the bubble sped up adoption, we have
my > =2, So%ﬂ:%<%.Asaresult,%<l.

250me readers might notice that w; here evolves independently of
my. This result is also special to the y = ¢ condition.

2 Another way to see the intuition here is to note if we let 11; follow its
natural path by setting ¢ = 0, Equation (16) reduces to (3). Hence, the
natural user adoption by itself cannot produce Proposition 1.

2To see this, consider the case where there are M = 2 units of users.
We normalize M to 1 by treating every two actual users as one user
in the model. However, this normalization means that each user in
the model holds x = 2 units of endowment. So we further normalize
this endowment to x =1 by deflating dollars by a factor of two.
A consequence of this deflation is that investor endowment, y, needs
to be halved as well.

BFor an example, y =0.25, =1, A =6 = 0.25, and w; = 0.5.
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